【題目】如圖,點為正四棱錐的底面中心,四邊形為矩形,且,.
(1)求正四棱錐的體積;
(2)設(shè)為側(cè)棱上的點,且,求直線和平面所成角的大。
【答案】(1)(2)
【解析】
(1)根據(jù)條件求出底面面積,用錐體體積公式即可求解;(2)以O(shè)點為原點建立空間直角坐標(biāo)系,求出直線的方向向量和平面的法向量的坐標(biāo),用公式
求解即可。
解:(1)由已知可得,
注意到,故底面正方形的邊長,
所以正四棱錐的體積為…
.
(2)以為原點,,,分別為,,軸,建立如圖所示的空間直角坐標(biāo)系,易得,,,,.
設(shè)平面的一個法向量為,則,
所以,
又,,即.
解得可取
依題意可得,現(xiàn)設(shè),則,
那有,故,故,
從而,…
設(shè)直線和平面所成角為,則
,
∵,∴,
故,直線和平面所成角的大小為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究學(xué)生的數(shù)學(xué)核心素養(yǎng)與抽象能力(指標(biāo))、推理能力(指標(biāo))、建模能力(指標(biāo))的相關(guān)性,將它們各自量化為1、2、3三個等級,再用綜合指標(biāo)的值評定學(xué)生的數(shù)學(xué)核心素養(yǎng),若,則數(shù)學(xué)核心素養(yǎng)為一級;若,則數(shù)學(xué)核心素養(yǎng)為二級;若,則數(shù)學(xué)核心素養(yǎng)為三級,為了了解某校學(xué)生的數(shù)學(xué)核心素養(yǎng),調(diào)查人員隨機訪問了某校10名學(xué)生,得到如下數(shù)據(jù):
學(xué)生編號 | ||||||||||
(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同條件下綜合指標(biāo)值也相同的概率;
(2)在這10名學(xué)生中任取三人,其中數(shù)學(xué)核心素養(yǎng)等級是一級的學(xué)生人數(shù)記為,求隨機變量的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求在點處的切線方程;
(Ⅱ)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若對任意的,在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過點的橢圓的離心率為,橢圓與軸交于兩點、,過點的直線與橢圓交于另一點,并與軸交于點,直線與直線交于點.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)點異于點時,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.
(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機抽取2戶進(jìn)行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1:(t為參數(shù)),C2:(m為參數(shù)).
(1)將C1,C2的方程化為普通方程,并說明它們分別表示什么曲線;
(2)設(shè)曲線C1與C2的交點分別為A,B,O為坐標(biāo)原點,求△OAB的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列三個正方體中,均為所在棱的中點,過作正方體的截面.在各正方體中,直線與平面的位置關(guān)系描述正確的是
A. 平面的有且只有①;平面的有且只有②③
B. 平面的有且只有②;平面的有且只有①
C. .平面的有且只有①;平面的有且只有②
D. 平面的有且只有②;平面的有且只有③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}.
(1)求實數(shù)a的值;
(2)設(shè)g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com