對于任意實數(shù)x,函數(shù)f(x)=(5-a)x2-6x+a+5恒為正值,求a的取值范圍.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)f(x)=(5-a)x2-6x+a+5恒為正值,可轉(zhuǎn)化為5-a>0,且△<0,解不等式組可得答案.
解答: 解:由函數(shù)f(x)=(5-a)x2-6x+a+5恒為正值,
若5-a=0,即a=5時,不等式等價為-6x+10>0,此時不滿足條件.
∴a≠5,
要使函數(shù)f(x)=(5-a)x2-6x+a+5恒為正值,
5-a>0
△=36-4(5-a)(a+5)<0
,
解得-4<a<4,
∴a的取值范圍是-4<a<4.
點評:本題主要考查不等式恒成立問題,利用一元二次不等式的性質(zhì)是解決本題的關(guān)鍵,注意對二次項系數(shù)進(jìn)行分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ)(0≤θ≤π).
(1)若
a
b
,求θ;
(2)求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC三個內(nèi)角A,B,C的對邊,
3
(c-acosB)=b(sinA+1).
(Ⅰ)求sinA;
(Ⅱ)若b=
3
,
AB
AC
=6,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx.
(1)求這個函數(shù)的圖象在點x=1處的切線方程;
(2)求這個函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx-2ax2(a∈R).
(Ⅰ)當(dāng)a=1時,求f(x)的極值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)a=
1
8
時,證明:f(x)≤
2
4
x4+1
-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖甲,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD,E、F、G分別是PC、PD、BC的中點,現(xiàn)將△PDC沿CD折起,使平面PDC⊥平面ABCD(如圖乙),且所得到的四棱錐P-ABCD的正視圖、側(cè)視圖、俯視圖的面積總和為8.
(1)求點C到平面EFG的距離;
(2)求二面角G-EF-D夾角的余弦值;
(3)在線段PB上確定一點Q,使PC⊥平面ADQ,并給出證明過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=a-
2
2x+1
(a∈R).
(1)是否存在實數(shù)a使函數(shù)f(x)為奇函數(shù)?
(2)當(dāng)a=1時,滿足f(2-b)+f(1-b)<0,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PA⊥矩形ABCD所在平面,M、N分別為AB、PC的中點.
(1)求證:MN∥平面PAD;
(2)求證:MN⊥CD;
(3)若∠PDA=45°,求證:MN⊥面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①存在實數(shù)α,使得sinα•cosα=1成立;
②存在實數(shù)α,使得sinα+cosα=
3
2
成立;
③y=sin(
2
-2x)是偶函數(shù);
④x=
π
8
是函數(shù)y=sin(2x+
4
)的一條對稱軸;
⑤若α,β是第一象限角,且α>β,則tanα>tanβ.
其中正確命題的序號有
 

查看答案和解析>>

同步練習(xí)冊答案