已知平面直角坐標(biāo)系中O是坐標(biāo)原點(diǎn),,圓的外接圓,過(guò)點(diǎn)(2,6)的直線為。
(1)求圓的方程;
(2)若與圓相切,求切線方程;
(3)若被圓所截得的弦長(zhǎng)為,求直線的方程。

解:(1)圓C的方程為:
(2)        (3)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:以點(diǎn)C (t, )(t∈R , t ≠ 0)為圓心的圓與軸交于點(diǎn)O, A,與y軸交于點(diǎn)O, B,其中O為原點(diǎn).
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y = –2x+4與圓C交于點(diǎn)M, N,若|OM| = |ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=|PD|.

(Ⅰ)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)求過(guò)點(diǎn)(3,0)且斜率為的直線被曲線C所截線段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分15分)
設(shè)有半徑為3的圓形村落,、兩人同時(shí)從村落中心出發(fā)。一直向北直行;先向東直行,出村后一段時(shí)間,改變前進(jìn)方向,沿著與村落邊界相切的直線朝所在的方向前進(jìn)。
(1)若在距離中心5的地方改變方向,建立適當(dāng)坐標(biāo)系,
求:改變方向后前進(jìn)路徑所在直線的方程
(2)設(shè)、兩人速度一定,其速度比為,且后來(lái)恰與相遇.問(wèn)兩人在何處相遇?
(以村落中心為參照,說(shuō)明方位和距離)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一動(dòng)圓與圓外切,與圓內(nèi)切.
(I)求動(dòng)圓圓心M的軌跡方程.(II)試探究圓心M的軌跡上是否存在點(diǎn),使直線的斜率?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說(shuō)明理由(不必具體求出這些點(diǎn)的坐標(biāo))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

三角形的頂點(diǎn),重心
(1)求三角形的面積;(2)求三角形外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C1與圓C2相交于A、B兩點(diǎn),
(1)求公共弦AB所在的直線方程;
(2)求圓心在直線上,且經(jīng)過(guò)A、B兩點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
已知為平面直角坐標(biāo)系的原點(diǎn),過(guò)點(diǎn)的直線與圓交于,兩點(diǎn).
(I)若,求直線的方程;
(Ⅱ)若的面積相等,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓C:x2+y2=r2(r>0)經(jīng)過(guò)點(diǎn)(1,).
(1)求圓C的方程;
(2)是否存在經(jīng)過(guò)點(diǎn)(-1,1)的直線l,它與圓C相交于A,B兩個(gè)不同點(diǎn),且滿足=+(O為坐標(biāo)原點(diǎn))關(guān)系的點(diǎn)M也在圓C上?如果存在,求出直線l的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案