設(shè)x+y+z=2,則m=x2+2y2+z2的最小值為    
【答案】分析:利用:(x2+2y2+z2)×(1++1 )≥(x+y+z)2這個(gè)條件進(jìn)行證明.
解答:證明:∵(x2+2y2+z2)×(1++1 )≥(x+y+z)2=20,
∴x2+2y2+z2≥20×=8,
故 m=x2+2y2+z2的最小值為8,
故答案為:8.
點(diǎn)評:本題考查用綜合法證明不等式,關(guān)鍵是利用:(x2+2y2+z2)×(1++1 )≥(x+y+z)2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(不等式選講選做題)設(shè)x+y+z=2,則m=x2+2y2+z2的最小值為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年廣東省惠州市高三第一次調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)x+y+z=2,則m=x2+2y2+z2的最小值為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省湛江市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

設(shè)x+y+z=2,則m=x2+2y2+z2的最小值為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年廣東省廣州市天河區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

設(shè)x+y+z=2,則m=x2+2y2+z2的最小值為    

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�