已知長方體
中,
,E、F分別為
和AD的中點,則異面直線
、EF所成的角為( )
取CD的中點G,利用三角形中位線的性質(zhì)可得∠GEF或其補角即為異面直線CD1與EF所成的角.再利用勾股定理可得△EFG為等腰直角三角形,得到∠GEF=45°,從而求得異面直線CD1與EF所成的角為900,選D
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分14分)
如圖, 在直三棱柱
中,
,
,
.
(1)求證:
;
(2)問:是否在
線段上存在一點
,使得
平面
?
若存在,請證明;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
,
,
是三條直線,
,且
與
的夾角為
,那么
與
夾角為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖所示,等邊△ABC的邊長為4,D為BC中點,沿AD把△ADC折疊到△ADC′處,
使二面角B-AD-C′為60°,則折疊后二面角A-BC′-D的正切值為________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如右圖所示,正四棱錐P-ABCD的底面積為3,體積為
,E為側棱PC的中點,則PA與BE所成的角為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖(1),矩形ABCD中,M、N分別為邊AD、BC的中點,E、F分別為邊AB、CD上的定點且滿足EB=FC,現(xiàn)沿虛線折疊使點B、C重合且與E、F共線,如圖(2).若此時
二面角A-MN-D的大小為60°,則折疊后EN與平面MNFD所成角的正弦值是( )
(A)
(B)
(C)
(D)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知正三棱柱
的側棱長與底面邊長都相等.點
是線段
的中點,則直線
與側面
所成角的正切值等于 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖3,在長方體ABCD-A
1B
1C
1D
1中,底面ABCD為正方形, AA
1=2AB,則異面直線A
1B與AD
1所成的角的余弦值為( )
查看答案和解析>>