精英家教網 > 高中數學 > 題目詳情
對于任意實數a,b,c,d,給定下列命題正確的是( 。
A、若a>b,c≠0,則ac>bc
B、若a>b,則ac2>bc2
C、若ac2>bc2,則a>b
D、若a>b,則
1
a
1
b
分析:對于A、當c<0時,不成立;對于B、當c=0時,不成立;D、當a>0.b<0時,不成立,從而得出正確選項.
解答:解:A、當c<0時,不成立;
B、當c=0時,不成立
C、∵ac2>bc2,∴c≠0,∴c2>0
∴一定有a>b.故C成立;
D、當a>0.b<0時,不成立;
故選C.
點評:本小題主要考查不等關系與不等式、不等式的性質等基礎知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

有以下四個命題:
①對于任意實數a、b、c,若a>b,c≠0,則ac>bc;
②設Sn 是等差數列{an}的前n項和,若a2+a6+a10為一個確定的常數,則S11也是一個確定的常數;
③關于x的不等式ax+b>0的解集為(-∞,1),則關于x的不等式
bx-ax+2
>0的解集為(-2,-1);
④對于任意實數a、b、c、d,若a>b>0,c>d則ac>bd.
其中正確命題的是
 
(把正確的答案題號填在橫線上)

查看答案和解析>>

科目:高中數學 來源: 題型:

設定義在(0,+∞)上的函數f(x)滿足以下條件:①對于任意實數a,b,都有f(a•b)=f(a)+f(b)-p,其中p是正實數;②f(2)=p-1;(2)③x>1時,總有f(x)<p
(1)求f(1)及f(
12
)
的值(寫成關于p的表達式);
(2)求證:f(x)在(0,+∞)上是減函數.

查看答案和解析>>

科目:高中數學 來源: 題型:

如果對于任意實數a,b(a<b),隨機變量X滿足P(a<X≤b)=
b
a
?μ,σ(x)dx
,稱隨機變量X服從正態(tài)分布,記為N(μ,σ2),若X~(0,1),P(X>1)=p,則
0
-1
?μ,σ(x)dx
=
1
2
-p
1
2
-p

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•房山區(qū)二模)設定義在(0,+∞)上的函數f(x)滿足:①對于任意實數a,b都有f(ab)=f(a)+f(b)-5;②f(2)=4.則f(1)=
5
5
;若an=f(2n)(n∈N*),數列{an}的前項和為Sn,則Sn的最大值是
10
10

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x3-ln(
x2+1
-x)
,則對于任意實數a,b(a+b≠0),
f(a)+f(b)
a+b
的值( 。

查看答案和解析>>

同步練習冊答案