已知雙曲線x2-y2=1和斜率為
1
2
的直線l交于A,B兩點(diǎn),當(dāng)l變化時(shí),線段AB的中點(diǎn)M的軌跡方程為
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)A,B的坐標(biāo),利用點(diǎn)差法求斜率,再利用兩點(diǎn)式求斜率,利用相等可得軌跡方程.
解答: 解:設(shè)M的坐標(biāo)為(x,y),(x1,y1)、B(x2,y2),
代入雙曲線方程得,
x12-y12=1,①
x22-y22=1,②

①-②得(x1+x2)(x1-x2)=(y1+y2)(y1-y2),
∵點(diǎn)M是線段AB的中點(diǎn),
∴x=
1
2
(x1+x2),y=
1
2
(y1+y2),
y1-y2
x1-x2
=
x
y

∵直線l的斜率為
1
2
,
x
y
=
1
2
,
即y=2x
故答案為:y=2x
點(diǎn)評:本題主要課程弦中點(diǎn)的軌跡問題,常采用設(shè)而不求法,屬于常規(guī)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知點(diǎn)A(2,0),點(diǎn)B(0,2),點(diǎn)C(-
3
,-1).
(1)求經(jīng)過A,B,C三點(diǎn)的圓P的方程;
(2)若直線l經(jīng)過點(diǎn)(1,1)且被圓P截得的弦長為2
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若在拋物線2y=x2上存在兩個(gè)不同的點(diǎn)M、N關(guān)于直線y=kx+3對稱,則實(shí)數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)已知曲線C的極坐標(biāo)方程為ρ=4cosθ-2sinθ,則點(diǎn)M(-2,-3)與曲線C上的點(diǎn)的最小距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)斜率為
2
2
的直線l與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)交于不同的兩點(diǎn)P、Q,若點(diǎn)P、Q在x軸上的射影恰好為雙曲線的兩個(gè)焦點(diǎn),則該雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1,以坐標(biāo)原點(diǎn)為頂點(diǎn),曲線C的頂點(diǎn)為焦點(diǎn)的拋物線與曲線C的漸進(jìn)線的一個(gè)交點(diǎn)坐標(biāo)為(4,4),則雙曲線C的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+ax-1.
(I)求證:當(dāng)a>-1且x>0時(shí),f(x)>0;
(Ⅱ)g(x)=ex+2x2-x+k,若對任意x1,x2,x3∈[-1,1],長分別為g(x1),g(x2),g(x3)的線段
能構(gòu)成三角形,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:x2-
y2
3
=1,若a>0,求點(diǎn)M(a,0)到雙曲線C的距離的最小值f(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-ex,(a>0)
(1)若a=1,求函數(shù)f(x)在x=1處的切線方程;
(2)求證:對任意的a∈[1,e+1],f(x)≤x恒成立.

查看答案和解析>>

同步練習(xí)冊答案