如圖,三棱柱中,側(cè)棱與底面垂直,,,分別是的中點(diǎn)

(1)求證:∥平面
(2)求證:⊥平面;
(3)求三棱錐的體積的體積.

(1)證明過(guò)程詳見(jiàn)解析;(2)證明過(guò)程詳見(jiàn)解析;(3).

解析試題分析:本題主要以三棱柱為幾何背景考查線面平行、線面垂直和幾何體體積等基礎(chǔ)知識(shí),考查空間想象能力、運(yùn)算能力和推理論證能力.第一問(wèn),先根據(jù)題意作出輔助線,在中,利用中位線的性質(zhì)得,再由線面平行的判定,得證;第二問(wèn),由已知條件可以判斷四邊形是正方形,所以對(duì)角線互相垂直,所以,又由于第一問(wèn)得,所以,再由已知證即可,由已知邊長(zhǎng),得,所以,所以為等腰三角形,而為中點(diǎn),所以為高,得證,再利用線面垂直的判定即可得證;第三問(wèn),利用等體積法將三棱錐進(jìn)行轉(zhuǎn)化,找到已知條件求體積.
試題解析:(1)證明:連結(jié),顯然過(guò)點(diǎn)
分別是的中點(diǎn),    ∴,
平面,平面,∴平面,
(2)∵三棱柱中,側(cè)棱與底面垂直,,
∴四邊形是正方形,∴
由(1)知,∴,
連結(jié),由,知,
,又易知的中點(diǎn),∴,
平面.
(3)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c3/4/1ypok2.png" style="vertical-align:middle;" />,所以三棱錐與三棱錐的體積相等,
.
考點(diǎn):1.中位線的性質(zhì);2.線面平行的判定;3.三角形全等;4.線面垂直的判定;5.等體積法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三角形中,,是邊長(zhǎng)為的正方形,平面⊥底面,若、分別是、的中點(diǎn).

(1)求證:∥底面;
(2)求證:⊥平面
(3)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正三棱柱ABC—A1B1C1的各棱長(zhǎng)都相等,M、E分別是和AB1的中點(diǎn),點(diǎn)F在BC上且滿足BF∶FC=1∶3.

(1)求證:BB1∥平面EFM;
(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn)

(Ⅰ)證明:BC1//平面A1CD;
(Ⅱ)設(shè)AA1=AC=CB=2,AB=,求三棱錐C一A1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC.

(1)求證:AC⊥BB1;
(2)若P是棱B1C1的中點(diǎn),求平面PAB將三棱柱分成的兩部分體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖是一個(gè)直三棱柱被削去一部分后的幾何體的直觀圖與三視圖中的側(cè)視圖、俯視圖.在直觀圖中,的中點(diǎn).又已知側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.

(1)求證:EM∥平面ABC;
(2)試問(wèn)在棱DC上是否存在點(diǎn)N,使NM⊥平面? 若存在,確定
點(diǎn)N的位置;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知四棱錐中,側(cè)棱底面,且底面是邊長(zhǎng)為2的正方形,,相交于點(diǎn)

(I)證明:;
(II)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在三棱錐A—BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=,BD=CD=1,另一個(gè)側(cè)面ABC是正三角形.

(1)當(dāng)正視圖方向與向量的方向相同時(shí),畫(huà)出三棱錐A—BCD的三視圖;(要求標(biāo)出尺寸)
(2)求二面角B—AC—D的余弦值;
(3)在線段AC上是否存在一點(diǎn)E,使ED與平面BCD成30°角? 若存在,確定點(diǎn)E的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面四邊形ABCD中,ABC為正三角形,ADC為等腰直角三角形,AD=DC=2,將ABC沿AC折起,使點(diǎn)B至點(diǎn)P,且PD=2,M為PA的中點(diǎn),N在線段PD上。

(I)若PA平面CMN,求證:AD//平面CMN;
(II)求直線PD與平面ACD所成角的余弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案