【題目】揚(yáng)州市2016—2017學(xué)年度第一學(xué)期期末檢測(cè)(本小題滿分14分)

如圖,矩形ABCD是一個(gè)歷史文物展覽廳的俯視圖,點(diǎn)E在AB上,在梯形BCDE區(qū)域內(nèi)部展示文物,DE是玻璃幕墻,游客只能在ADE區(qū)域內(nèi)參觀.在AE上點(diǎn)P處安裝一可旋轉(zhuǎn)的監(jiān)控?cái)z像頭,為監(jiān)控角,其中M、N在線段DE(含端點(diǎn))上,且點(diǎn)M在點(diǎn)N的右下方.經(jīng)測(cè)量得知:AD=6米,AE=6米,AP=2米,.記(弧度),監(jiān)控?cái)z像頭的可視區(qū)域PMN的面積S平方米.

(1)求S關(guān)于的函數(shù)關(guān)系式,并寫出的取值范圍;(參考數(shù)據(jù):

(2)的最小值.

【答案】見解析

【解析】⑴方法一:在PME中,,PE=AE-AP=4米,,,

由正弦定理,

所以,---------------------2分

同理在PNE中,由正弦定理得,

所以---------------------4分

所以PMN的面積S

--------------------8分

當(dāng)M與E重合時(shí),;當(dāng)N與D重合時(shí),,即,,

所以.

綜上可得:,.---------------------10分

方法二:在PME中,,PE=AE-AP=4米,,,由正弦定理可知:,

所以---------------------2分

PNE中,由正弦定理可知:,

所以---------------------4分

所以,

又點(diǎn)P到DE的距離為,---------------------6分

所以PMN的面積S=

,---------------------8分

當(dāng)M與E重合時(shí),;當(dāng)N與D重合時(shí),,即,

所以.

綜上可得:,.---------------------10分

⑵當(dāng)時(shí),取得最小值為.---------13分

所以可視區(qū)域PMN面積的最小值為平方米.---------------------14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017山西三區(qū)八校二!已知函數(shù)其中為常數(shù)且處取得極值.

當(dāng)時(shí),求的單調(diào)區(qū)間;

上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017南通一模19已知函數(shù)。

(1)當(dāng)時(shí),求函數(shù)的最小值;

(2)若,證明:函數(shù)有且只有一個(gè)零點(diǎn);

(3)若函數(shù)又兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某校高三一級(jí)部和二級(jí)部的人數(shù)分別是m、n,本次期末考試兩級(jí)部數(shù)學(xué)平均分分別是a、b,則這兩個(gè)級(jí)部的數(shù)學(xué)平均分為 + ;
③某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級(jí)全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查,現(xiàn)將800名學(xué)生從001到800進(jìn)行編號(hào),已知從497﹣﹣512這16個(gè)數(shù)中取得的學(xué)生編號(hào)是503,則初始在第1小組00l~016中隨機(jī)抽到的學(xué)生編號(hào)是007.
其中命題正確的個(gè)數(shù)是(
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正方體ABCD﹣A1B1C1D1中,點(diǎn)E是棱AB上的動(dòng)點(diǎn).
(1)求證:DA1⊥ED1
(2)若直線DA1與平面CED1成角為45°,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】福州市某大型家電商場(chǎng)為了使每月銷售空調(diào)和冰箱獲得的總利潤(rùn)達(dá)到最大,對(duì)某月即將出售的空調(diào)和冰箱進(jìn)行了相關(guān)調(diào)查,得出下表:

資金

每臺(tái)空調(diào)或冰箱所需資金(百元)

月資金最多供應(yīng)量(百元)

空調(diào)

冰箱

進(jìn)貨成本

30

20

300

工人工資

5

10

110

每臺(tái)利潤(rùn)

6

8

問:該商場(chǎng)如果根據(jù)調(diào)查得來的數(shù)據(jù),應(yīng)該怎樣確定空調(diào)和冰箱的月供應(yīng)量,才能使商場(chǎng)獲得的總利潤(rùn)最大?總利潤(rùn)的最大值為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x2﹣1|+x2+kx.
(1)若對(duì)于區(qū)間(0,+∞)內(nèi)的任意x,總有f(x)≥0成立,求實(shí)數(shù)k的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(0,2)內(nèi)有兩個(gè)不同的零點(diǎn)x1 , x2 , 求:
①實(shí)數(shù)k的取值范圍;
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017廣東佛山二!如圖,矩形中, , 邊上,且,將沿折到的位置,使得平面平面.

(Ⅰ)求證: ;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)AB為曲線Cy=上兩點(diǎn),AB的橫坐標(biāo)之和為4.

(1)求直線AB的斜率;

(2)設(shè)M為曲線C上一點(diǎn),CM處的切線與直線AB平行,且AMBM,求直線AB的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案