已知函數(shù)f(x)=x3-3x+a有三個零點,則a的取值范圍為( 。
A、(-∞,-2)∪(2,+∞)
B、(-∞,2]∪[2,+∞)
C、(-2,2)
D、[-2,2]
考點:利用導數(shù)研究函數(shù)的極值,函數(shù)零點的判定定理
專題:函數(shù)的性質及應用
分析:已知條件轉化為函數(shù)有兩個極值點,并且極小值小于0,極大值大于0,求解即可.
解答: 解:由函數(shù)f(x)=x3-3x+a有三個不同的零點,
則函數(shù)f(x)有兩個極值點,極小值小于0,極大值大于0;
由f′(x)=3x2-3=3(x+1)(x-1)=0,解得x1=1,x2=-1,
所以函數(shù)f(x)的兩個極,x∈(-∞,-1),f′(x)>0,x∈(-1,1),f′(x)<0,x∈(1,+∞),f′(x)>0,
∴函數(shù)的極小值f(1)=a-2和極大值f(-1)=a+2.
因為函數(shù)f(x)=x3-3x+a有三個不同的零點,
所以
a+2>0
a-2<0
,解之,得-2<a<2.
故實數(shù)a的取值范圍是(-2,2).
故選:C
點評:本題是中檔題,考查函數(shù)的導數(shù)與函數(shù)的極值的關系,考查轉化思想,計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列命題正確的是(  )
A、如果a,b是兩條直線,且a∥b,那么a平行于經過b的任何平面
B、如果直線a和平面α滿足a∥α,那么a與α內的任何直線平行
C、如果直線a,b和平面α滿足a∥α,b∥α,那么a∥b
D、如果直線a,b和平面α滿足a∥b,a∥α,b?α,那么b∥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=x2-ax+2在(2,+∞)上單調遞增,則a的取值范圍為( 。
A、[2,+∞)
B、[4,+∞)
C、(-∞,4]
D、(-∞,-4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“x=2”是“l(fā)og2|x|=1”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=lg
1+sinx
cosx
的圖象(  )
A、關于x軸對稱
B、關于y軸對稱
C、關于原點對稱
D、關于直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}滿足a3-a1=3,a1+a2=3.
(Ⅰ)求數(shù)列{an}的前15項的和S15;
(Ⅱ)若等差數(shù)列{bn}滿足b1=a2,b3=a2+a3,求數(shù)列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右準線為直線l,動直線y=kx+m(k<0,m>0)交橢圓于A,B兩點,線段AB的中點為M,射線OM分別交橢圓及直線l于P,Q兩點,如圖.若A,B兩點分別是橢圓E的右頂點,上頂點時,點Q的縱坐標為
1
e
(其中e為橢圓的離心率),且OQ=
5
OM.
(1)求橢圓E的標準方程;
(2)如果OP是OM,OQ的等比中項,那么
m
k
是否為常數(shù)?若是,求出該常數(shù);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,-3),
b
=(-1,2),
c
=(2,8)
(Ⅰ)若
c
=x
a
+y
b
,求x,y的值;
(Ⅱ)若
d
=3
a
+5
b
,求向量
a
與向量
d
的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的圖象的一部分如圖,已知函數(shù)與x軸交于點P(-2,0)和(6,0),點M,N分別是最高點和最低點,且∠MPN=
π
2

(Ⅰ)求函數(shù)f(x)表達式;
(Ⅱ)若f(x0+
10
3
)=
3
,求sin(
π
4
x0-
π
6
)的值.

查看答案和解析>>

同步練習冊答案