【題目】對函數(shù)f(x)= ,若a,b,c∈R,f(a),f(b),f(c)都為某個三角形的三邊長,則實數(shù)m的取值范圍是(
A.( ,6)
B.( ,6)
C.( ,5)
D.( ,5)

【答案】C
【解析】解:函數(shù)f(x)= ,若a,b,c∈R,f(a),f(b),f(c)都為某個三角形的三邊長, 當m=2時,f(x)= =1,
此時f(a)=f(b)=f(c)=1,是等邊三角形的三邊長,成立.
當m>2時,f(x)∈[1+ ,m﹣1],
只要2(1+ )>m﹣1即可,解得2<m<5.
當m<2時,f(x)∈[m﹣1,1+ ],
只要1+ <2(m﹣1)即可,解得 <m<2,
綜上,實數(shù)m的取值范圍( ,5),
故選:C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)求證:是偶函數(shù);

(2)求證:上是增函數(shù);

(3)設(shè),且),若對任意的,在區(qū)間上總存在兩個不同的數(shù),,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是現(xiàn)代生活進行信息交流的重要工具,據(jù)統(tǒng)計,某公司名員工中的人使用微信,其中每天使用微信時間在一小時以內(nèi)的有人,其余每天使用微信在一小時以上.若將員工年齡分成青年(年齡小于歲)和中年(年齡不小于歲)兩個階段,使用微信的人中是青年人.若規(guī)定:每天使用微信時間在一小時以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中是青年人.

)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出列聯(lián)表;


青年人

中年人

合計

經(jīng)常使用微信




不經(jīng)常使用微信




合計




)由列聯(lián)表中所得數(shù)據(jù),是否有的把握認為經(jīng)常使用微信與年齡有關(guān)?

)采用分層抽樣的方法從經(jīng)常使用微信的人中抽取人,從這人中任選人,求事件 選出的人均是青年人的概率.

附:







查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)員工500人參加學(xué)雷鋒志愿活動,按年齡分組:第1[25,30),第2[30,35),第3[35,40),第4[40,45),第5[45,50],得到的頻率分布直方圖如圖所示.

(1)上表是年齡的頻數(shù)分布表,求正整數(shù)的值;

(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,年齡在第1,2,3組的人數(shù)分別是多少?

(3)(2)的前提下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,BC邊上的高所在直線的方程為x2y10,A的平分線所在的直線方程為y0.若點B的坐標為(1,2),求點A和點C的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過點,且斜率為

(I)求直線的方程;

)若直線平行,且點P到直線的距離為3,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線在第一象限內(nèi)的點到焦點的距離為

(1)若,過點, 的直線與拋物線相交于另一點,求的值;

(2)若直線與拋物線相交于兩點,與圓相交于兩點, 為坐標原點, ,試問:是否存在實數(shù),使得的長為定值?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x)=的定義域為R,其中g(x)為指數(shù)函數(shù),且過定點(2,9).

(1)求函數(shù)f(x)的解析式;

(2)若對任意的t∈[0,5],不等式f(t2+2tk)+f(-2t2+2t-5)>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的圓心在直線上,且經(jīng)過點A-3,0),B1,2).

(1)求圓M的方程;

2)直線與圓M相切,且y軸上的截距是x軸上截距的兩倍,求直線的方程.

查看答案和解析>>

同步練習冊答案