【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為4,橢圓 的離心率且過拋物線的焦點(diǎn).

1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)的直線交拋物線兩不同點(diǎn),交軸于點(diǎn),已知, ,求證: 為定值.

【答案】(1)拋物線的方程為橢圓的標(biāo)準(zhǔn)方程為;(2)見解析.

【解析】試題分析:1)利用拋物線C1y22px上一點(diǎn)M3,y0)到其焦點(diǎn)F的距離為4;求出p,即可得到拋物線方程,通過橢圓的離心率e,,且過拋物線的焦點(diǎn)F1,0)求出ab,即可得到橢圓的方程;

2)直線l1的斜率必存在,設(shè)為k,設(shè)直線l與橢圓C2交于A(x1,y1),B(x2,y2),求出直線l的方程為y=k(x-1),N(0,-k),聯(lián)立直線與橢圓的方程,利用韋達(dá)定理以及判別式,通過向量關(guān)系式即可求出λ+μ為定值.

試題解析:

(Ⅰ)拋物線的準(zhǔn)線為, 所以,所以

拋物線的方程為

所以,,解得所以橢圓的標(biāo)準(zhǔn)方程為

(Ⅱ)直線的斜率必存在,設(shè)為,設(shè)直線與拋物線交于

則直線的方程為,

聯(lián)立方程組:

所以 , (*)

得:

得:

所以

將(*)代入上式,得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

對任意的, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

)求的單調(diào)區(qū)間.

)證明:當(dāng)時(shí),方程在區(qū)間上只有一個(gè)零點(diǎn).

)設(shè),其中恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,EAD的中點(diǎn),FB1C1的中點(diǎn).

(1)求證:A1F∥平面ECC1

(2)在CD上是否存在一點(diǎn)G,使BG⊥平面ECC1?若存在,請確定點(diǎn)G的位置,并證明你的結(jié)論,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

Ⅰ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值與最小值;

Ⅱ)當(dāng)的圖像經(jīng)過點(diǎn)時(shí),求的值及函數(shù)的最小正周期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著“中華好詩詞”節(jié)目的播出,掀起了全民誦讀傳統(tǒng)詩詞經(jīng)典的熱潮.某大學(xué)社團(tuán)為調(diào)查大學(xué)生對于“中華詩詞”的喜好,在該校隨機(jī)抽取了40名學(xué)生,記錄他們每天學(xué)習(xí)“中華詩詞”的時(shí)間并整理得到如下頻率分布直方圖:

根據(jù)學(xué)生每天學(xué)習(xí)“中華詩詞”的時(shí)間,可以將學(xué)生對于“中華詩詞”的喜好程度分為三個(gè)等級 :

學(xué)習(xí)時(shí)間

(分鐘/天)

等級

一般

愛好

癡迷

()的值;

(Ⅱ) 從該大學(xué)的學(xué)生中隨機(jī)選出一人,試估計(jì)其“愛好”中華詩詞的概率

(Ⅲ) 假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,試估計(jì)樣本中40名學(xué)生每人每天學(xué)習(xí)“中華詩詞”的時(shí)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市高中全體學(xué)生參加某項(xiàng)測評,按得分評為兩類(評定標(biāo)準(zhǔn)見表1).根據(jù)男女學(xué)生比例,使用分層抽樣的方法隨機(jī)抽取了10000名學(xué)生的得分?jǐn)?shù)據(jù),其中等級為的學(xué)生中有40%是男生,等級為的學(xué)生中有一半是女生.等級為的學(xué)生統(tǒng)稱為類學(xué)生,等級為的學(xué)生統(tǒng)稱為類學(xué)生.整理這10000名學(xué)生的得分?jǐn)?shù)據(jù),得到如圖2所示的頻率分布直方圖,

類別

得分(

表1

(I)已知該市高中學(xué)生共20萬人,試估計(jì)在該項(xiàng)測評中被評為類學(xué)生的人數(shù);

(Ⅱ)某5人得分分別為45,50,55,75,85.從這5人中隨機(jī)選取2人組成甲組,另外3人組成乙組,求“甲、乙兩組各有1名類學(xué)生”的概率;

(Ⅲ)在這10000名學(xué)生中,男生占總數(shù)的比例為51%, 類女生占女生總數(shù)的比例為, 類男生占男生總數(shù)的比例為,判斷的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線.

(1)將曲線上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長為原來的倍、2倍后得到曲線.試寫出直線的直角坐標(biāo)方程和曲線的參數(shù)方程;

(2)在曲線上求一點(diǎn),使點(diǎn)到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點(diǎn),曲線的參考方程為為參數(shù)).

(1)求曲線上的點(diǎn)到直線的距離的最大值與最小值;

(2)過點(diǎn)與直線平行的直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊答案