(本題滿分12分)
已知數(shù)列的通項(xiàng)公式為,數(shù)列的前n項(xiàng)和為,且滿足
(1)求的通項(xiàng)公式;
(2)在中是否存在使得是中的項(xiàng),若存在,請(qǐng)寫出滿足題意的一項(xiàng)(不要求寫出所有的項(xiàng));若不存在,請(qǐng)說明理由.
(1) (2)
解析試題分析:解:(I)當(dāng)時(shí),………………………………2分
當(dāng)時(shí),
兩式相減得:,即:…………………………………………6分
故{}為首項(xiàng)和公比均為的等比數(shù)列,……………………………8分
(II)設(shè)中第m項(xiàng)滿足題意,即,即
所以
(其它形如的數(shù)均可)……………………12分
考點(diǎn):等比數(shù)列
點(diǎn)評(píng):解決的關(guān)鍵是利用前n項(xiàng)和與其通項(xiàng)公式的關(guān)系式,對(duì)于n分類討論得到其通項(xiàng)公式,并能通過驗(yàn)證來說明是否有滿足題意的項(xiàng),屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,滿足。
(1)求證:數(shù)列為等差數(shù)列;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和為,且方程有一個(gè)根為,.
(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè)方程的另一個(gè)根為,數(shù)列的前項(xiàng)和為,求的值;
(3)是否存在不同的正整數(shù),使得,,成等比數(shù)列,若存在,求出滿足條件的,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前項(xiàng)和為,,,等差數(shù)列滿足.
(1)分別求數(shù)列,的通項(xiàng)公式;
(2)設(shè),求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
觀察下列三角形數(shù)表
記第行的第m個(gè)數(shù)為 .
(Ⅰ)分別寫出,,值的大;
(Ⅱ)歸納出的關(guān)系式,并求出關(guān)于n的函數(shù)表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}和{bn}滿足:,其中λ為實(shí)數(shù),n為正整數(shù).
(Ⅰ)若數(shù)列{an}前三項(xiàng)成等差數(shù)列,求的值;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知為等比數(shù)列,;為等差數(shù)列的前n項(xiàng)和,.
(1) 求和的通項(xiàng)公式;
(2) 設(shè),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知數(shù)列的前項(xiàng)和為,對(duì)一切正整數(shù),點(diǎn)都在函數(shù)的圖像上.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)數(shù)列前項(xiàng)和為,.
(1)求證:數(shù)列為等比數(shù)列;
(2)設(shè),數(shù)列前項(xiàng)和為,求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com