【題目】在平面直角坐標(biāo)系中,曲線t為參數(shù)),曲線,(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系.

1)求曲線,的極坐標(biāo)方程;

2)射線分別交,AB兩點(diǎn),求的最大值.

【答案】1,;(2.

【解析】

1)對(duì)于曲線入消元,消去.對(duì)于曲線利用,消去.再利用,即可化為極坐標(biāo)方程.

2)聯(lián)立射線的極坐標(biāo)方程為與曲線,的極坐標(biāo)方程,即可用角表示出、,化簡(jiǎn)后根據(jù)即可求出的最大值.

1)消去參數(shù)t,得曲線的直角坐標(biāo)方程為,

則曲線的極坐標(biāo)方程為.

消去參數(shù),得曲線的直角坐標(biāo)方程為,即

所以曲線的極坐標(biāo)方程為,即

2)射線的極坐標(biāo)方程為,

聯(lián)立,得

所以;

,得,則,

因此

,得.

所以,當(dāng),即時(shí),.

的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù),其中e=2.71828…為自然對(duì)數(shù)的底數(shù).

(Ⅰ)證明:函數(shù)上有唯一零點(diǎn);

(Ⅱ)記x0為函數(shù)上的零點(diǎn),證明:

(ⅰ);

(ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)R).

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)若對(duì)任意實(shí)數(shù),當(dāng)時(shí),函數(shù)的最大值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn),點(diǎn)在橢圓.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)經(jīng)過(guò)圓上一動(dòng)點(diǎn)作橢圓的兩條切線,切點(diǎn)分別記為,直線,分別與圓相交于異于點(diǎn)兩點(diǎn).

i)求證:;

ii)求的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.

)求直線的普通方程和曲線的直角坐標(biāo)方程;

)過(guò)原點(diǎn)的直線與直線交于點(diǎn),與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的普通方程和的直角坐標(biāo)方程;

(2)若過(guò)點(diǎn)的直線交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 的左、右焦點(diǎn)分別為, 為坐標(biāo)原點(diǎn), 是雙曲線上在第一象限內(nèi)的點(diǎn),直線分別交雙曲線左、右支于另一點(diǎn), ,且,則雙曲線的離心率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長(zhǎng)為2的正三角形,頂點(diǎn)上的射影為點(diǎn),且, , .

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線y2=4x的焦點(diǎn)的直線l與拋物線交于A,B兩點(diǎn),設(shè)點(diǎn)M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案