在區(qū)間(0,1)中隨機(jī)的取出兩個數(shù),則兩數(shù)之和小于1.2的概率是
0.68
0.68
分析:根據(jù)題意,設(shè)取出的兩個數(shù)為x、y,分析可得“0<x<1,0<y<1”表示的區(qū)域為縱橫坐標(biāo)都在(0,1)之間的正方形區(qū)域,易得其面積為1,而x+y<1.2表示的區(qū)域為直線x+y=1.2下方,且在0<x<1,0<y<1所表示區(qū)域內(nèi)部的部分,分別計算其面積,由幾何概型的計算公式可得答案.
解答:解:設(shè)取出的兩個數(shù)為x、y;
則有0<x<1,0<y<1,其表示的區(qū)域為縱橫坐標(biāo)都在(0,1)之間的正方形區(qū)域,易得其面積為1,
而x+y<1.2表示的區(qū)域為直線x+y=1.2下方,且在0<x<1,0<y<1表示區(qū)域內(nèi)部的部分,如圖,
易得其面積為1-
0.8×0.8
2
=0.68;
則兩數(shù)之和小于1.2的概率是
0.68
1
=0.68;
故答案為0.68.
點評:本題考查幾何概型的計算,解題的關(guān)鍵在于用平面區(qū)域表示出題干的代數(shù)關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

探究函數(shù)f(x)=x2+
2
x
(x>0)
的最小值,并確定取得最小值時x的值.列表如下,請觀察表中y值隨x值變化的特點,完成以下的問題.
x 0.25 0.5 0.75 1 1.1 1.2 1.5 2 3 5
y 8.063 4.25 3.229 3 3.028 3.081 3.583 5 9.667 25.4
已知:函數(shù)f(x)=x2+
2
x
(x>0)
在區(qū)間(0,1)上遞減,問:
(1)函數(shù)f(x)=x2+
2
x
(x>0)
在區(qū)間
[1,+∞)
[1,+∞)
上遞增.當(dāng)x=
1
1
時,y最小=
3
3
;
(2)函數(shù)g(x)=9x2+
2
3|x|
在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

探究f(x)=x+
1
x
,x∈(0,+∞)
的最小值,并確定相應(yīng)的x的值,類表如下:
x
1
4
1
3
1
2
1 2 3 4
y
17
4
10
3
5
2
2
5
2
10
3
17
4

請觀察表中y值隨x值變化的特點,完成下列的問題:
(1)若x1x2=1,則f(x1
 
f(x2)(請 用“>”、“<”或“=”填上);若函數(shù)f(x)=x+
1
x
,(x>0)
在區(qū)間(0,1)上單調(diào)遞減,則在區(qū)間
 
上單調(diào)遞增.
(2)當(dāng)x=
 
時,f(x)=x+
1
x
,(x>0)
的最小值為
 

(3)證明函數(shù)f(x)=x+
1
x
在區(qū)間(1,+∞)上為單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆廣東省高一上學(xué)期期中試題數(shù)學(xué) 題型:解答題

(本題滿分12分)探究函數(shù)的最小值,并確定取得最小值時x的值. 列表如下, 請觀察表中y值隨x值變化的特點,完成以下的問題.

 

x

0.25

0.5

0.75

1

1.1

1.2

1.5

2

3

5

y

8.063

4.25

3.229

3

3.028

3.081

3.583

5

9.667

25.4

已知:函數(shù)在區(qū)間(0,1)上遞減,問:

(1)函數(shù)在區(qū)間                   上遞增.當(dāng)                時,                  ;

(2)函數(shù)在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結(jié)果,不需證明)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

探究函數(shù)f(x)=數(shù)學(xué)公式的最小值,并確定取得最小值時x的值.列表如下,請觀察表中y值隨x值變化的特點,完成以下的問題.
x0.250.50.7511.11.21.5235
y8.0634.253.22933.0283.0813.58359.66725.4
已知:函數(shù)f(x)=數(shù)學(xué)公式在區(qū)間(0,1)上遞減,問:
(1)函數(shù)f(x)=數(shù)學(xué)公式在區(qū)間________上遞增.當(dāng)x=________時,y最小=________;
(2)函數(shù)數(shù)學(xué)公式在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省廣州市執(zhí)信中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

探究函數(shù)f(x)=的最小值,并確定取得最小值時x的值.列表如下,請觀察表中y值隨x值變化的特點,完成以下的問題.
x0.250.50.7511.11.21.5235
y8.0634.253.22933.0283.0813.58359.66725.4
已知:函數(shù)f(x)=在區(qū)間(0,1)上遞減,問:
(1)函數(shù)f(x)=在區(qū)間______上遞增.當(dāng)x=______時,y最小=______;
(2)函數(shù)在定義域內(nèi)有最大值或最小值嗎?如有,是多少?此時x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

同步練習(xí)冊答案