某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如表
廣 告 費 用 (萬元) 4 2 3 5
銷 售 額 (萬元) 49 26 39 54
根據(jù)上表可得回歸方程
y
=
b
x+
a
中的
b
為9.4.
(1)求
a
的值;
(2)據(jù)此模型預(yù)報廣告費用為6萬元時,銷售額為多少?
考點:線性回歸方程
專題:計算題,概率與統(tǒng)計
分析:(1)首先求出所給數(shù)據(jù)的平均數(shù),得到樣本中心點,根據(jù)線性回歸直線過樣本中心點,求出方程中的一個系數(shù);
(2)確定線性回歸方程,把自變量為6代入,預(yù)報出結(jié)果.
解答: 解:(1)∵
.
x
=
4+2+3+5
4
=3.5,
.
y
=
49+26+39+54
4
=42,
∵數(shù)據(jù)的樣本中心點在線性回歸直線上,
y
=
b
x+
a
中的
b
為9.4,
∴42=9.4×3.5+a,
a
=9.1,
(2)由(1)知,線性回歸方程是
y
=9.4x+9.1,
∴x=6時,
y
=9.4×6+9.1=65.5,
∴廣告費用為6萬元時銷售額為65.5萬元.
點評:本題考查線性回歸方程.考查預(yù)報變量的值,考查樣本中心點的應(yīng)用,本題是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC的三個頂點是A(-5,0),B(3,-3),C(0,2),則△ABC的面積為( 。
A、
31
2
B、31
C、23
D、46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+3-ax(a∈R),若函數(shù)f(x)在區(qū)間(1,+∞)上遞減,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明f(x)=
1-x
1+x
在(-1,1)上為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一扇形周長為60,則它的半徑和圓心角各為多少時扇形面積最大?最大是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
(x∈R)
(1)當(dāng)x∈[-
π
12
,
12
]時,求函數(shù)f(x)取得最大值和最小值時x的值;
(2)設(shè)銳角△ABC的內(nèi)角A、B、C的對應(yīng)邊分別是a,b,c,且a=1,c∈N*,若向量
m
=(1,sinA)與向量
n
=(2,sinB)平行,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“蛟龍?zhí)枴睆暮5字袔Щ氐哪撤N生物,甲乙兩個生物小組分別獨立開展對該生物離開恒溫箱的成活情況進行研究,每次試驗一個生物,甲組能使生物成活的概率為
1
3
,乙組能使生物成活的概率為
1
2
,假定試驗后生物成活,則稱該試驗成功,如果生物不成活,則稱該次試驗是失敗的.
(1)甲小組做了三次試驗,求至少兩次試驗成功的概率;
(2)如果乙小組成功了4次才停止試驗,求乙小組第四次成功前共有三次失敗,且恰有兩次連續(xù)失敗的概率;
(3)若甲乙兩小組各進行2次試驗,設(shè)試驗成功的總次數(shù)為ξ,求ξ的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)的解析式為f(x)=
2
x
-1

(1)用定義證明f(x)在(0,+∞)上是減函數(shù);
(2)求y=f(x)在[2,6]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一質(zhì)點在直線上從時刻t=0(s)開始以速度v=-t+3(單位:m/s)運動.求質(zhì)點在4s內(nèi)運行的路程
 

查看答案和解析>>

同步練習(xí)冊答案