精英家教網 > 高中數學 > 題目詳情
已知函數,且此函數圖象過點(1,5).
(1)求實數m的值并判斷f(x)的奇偶性;
(2)判斷函數f(x)在(0,2)上的單調性,并用定義證明你的結論.
(3)解關于實數x的不等式
【答案】分析:(1)把(1,5)代入函數f(x),可求得m=4,利用奇偶性的定義,即可得到結論;
(2)函數在(0,2)上單調減,利用單調性的定義證明,取值,作差,變形,定號下結論;
(3)不等式,等價于f(1),由(2)知,從而可得不等式的解集.
解答:解:(1)把(1,5)代入函數f(x)得f(1)=1+m=5,解得m=4

=-f(x)
∴f(x)是奇函數;
(2)函數在(0,2)上單調減,證明如下:
取0<x1<x2<2,則f(x2)-f(x1)=(x2+)-(x1+)=(x2-x1)+4()=(x2-x1)(1-
因為0<x1<x2<2,所以x1x2<4,∴1-<0,x2-x1>0,所以f(x2)-f(x1)<0
∴f(x1)>f(x2
∴函數在(0,2)上單調減
(3)不等式,等價于f(1),由(2)知
∴2-2x>1
∴2x<1
∴x<0
∴不等式的解集為(-∞,0)
點評:本題考查函數的解析式,考查函數的奇偶性與單調性,考查解不等式,正確運用定義是關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源:2010-2011學年重慶一中高一(上)12月月考數學試卷(解析版) 題型:解答題

已知函數,且此函數圖象過點(1,5).
(1)求實數m的值;
(2)判斷f(x)奇偶性;
(3)討論函數f(x)在[2,+∞)上的單調性?并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年安徽省安慶市示范高中三校聯考高一(上)期末數學試卷(解析版) 題型:解答題

已知函數,且此函數圖象過點(1,5).
(1)求實數m的值;
(2)判斷f(x)奇偶性;
(3)討論函數f(x)在[2,+∞)上的單調性?并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:2009-2010學年湖南省益陽市桃江一中高一(下)期末數學復習試卷4(必修2)(解析版) 題型:解答題

已知函數,且此函數圖象過點(1,5).
(1)求實數m的值;
(2)判斷f(x)奇偶性;
(3)討論函數f(x)在[2,+∞)上的單調性?并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年云南省曲靖市陸良聯中高一(上)數學周末練習(2)(解析版) 題型:解答題

已知函數,且此函數圖象過點(1,5).
(1)求實數m的值;
(2)判斷f(x)奇偶性;
(3)討論函數f(x)在[2,+∞)上的單調性?并證明你的結論.

查看答案和解析>>

同步練習冊答案