(本小題8分)已知三棱錐A—BCD及其三視圖如圖所示.
(1)求三棱錐A—BCD的體積與點D到平面ABC的距離;
(2)求二面角 B-AC-D的正弦值.
(1) ;(2)二面角 B-AC-D的正弦值是。
【解析】考查線面平行、線線垂直的判定定理以及體積的求解.涉及到的知識點比較多,知識性技巧性都很強,屬于中檔題
(1)利用三視圖可知△ABC為直角三角形,∠DBC為直角,AD⊥面DBC,DB=BC=1,AD=2,則DE的長為點D到面ABC的距離,以及三棱錐的體積可得。
(2)作DF⊥AC于點F,連結(jié)EF,
∵DE⊥面ABC ∴DE⊥AC ∴AC⊥面DEF ∴AC⊥EF
∴∠DFE是二面角 B-AC-D的平面角從而解三角形可知。
(1)
由三視圖可得△ABC為直角三角形,∠DBC為直角,AD⊥面DBC,DB=BC=1,AD=2…………….2分
作DE⊥AB于點E
∵AD⊥面DBC,∴AD⊥BC
∵∠DBC為直角 ∴BC⊥面ADB
∴BC⊥DE
∴DE⊥面ABC………3分
∴DE的長為點D到面ABC的距離
∵DB=1,AD=2 ∴DE= ∴點D到平面ABC的距離為………4分
∵,∴………5分
(2) 作DF⊥AC于點F,連結(jié)EF,
∵DE⊥面ABC ∴DE⊥AC ∴AC⊥面DEF ∴AC⊥EF
∴∠DFE是二面角 B-AC-D的平面角………7分
∵DB=BC=1 ∴DC= ∴DF=
∴sin∠DFE=
∴二面角 B-AC-D的正弦值是………8分
科目:高中數(shù)學 來源:2010-2011年甘肅省蘭州一中高二第二學期期中考試數(shù)學 題型:解答題
(理)(本題8分)甲、乙、丙三人進行某項比賽,每局有兩人參加,沒有平局,在一局比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,比賽的規(guī)則是先由甲和乙進行第一局的比賽,然后每局的獲勝者與未參加此局比賽的人進行下一局的比賽,在比賽中,有人獲勝兩局就算取得比賽的勝利,比賽結(jié)束.
(1)求只進行兩局比賽,甲就取得勝利的概率;
(2)求只進行兩局比賽,比賽就結(jié)束的概率;
(3)求甲取得比賽勝利的概率.
20、(文)(本小題8分)甲、乙兩人做定點投籃,投籃者若投中則繼續(xù)投籃,否則由對方投籃,第一次甲投籃,已知甲、乙每次投籃命中的概率分別為、,且甲、乙投籃是否命中互不影響.
(1)求第三次由乙投籃的概率;
(2)求前4次投籃中各投兩次的概率.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年甘肅省高二第二學期期中考試數(shù)學 題型:解答題
(理)(本題8分)甲、乙、丙三人進行某項比賽,每局有兩人參加,沒有平局,在一局比賽中,甲勝乙的概率為,甲勝丙的概率為,乙勝丙的概率為,比賽的規(guī)則是先由甲和乙進行第一局的比賽,然后每局的獲勝者與未參加此局比賽的人進行下一局的比賽,在比賽中,有人獲勝兩局就算取得比賽的勝利,比賽結(jié)束.
(1)求只進行兩局比賽,甲就取得勝利的概率;
(2)求只進行兩局比賽,比賽就結(jié)束的概率;
(3)求甲取得比賽勝利的概率.
20、(文)(本小題8分)甲、乙兩人做定點投籃,投籃者若投中則繼續(xù)投籃,否則由對方投籃,第一次甲投籃,已知甲、乙每次投籃命中的概率分別為、,且甲、乙投籃是否命中互不影響.
(1)求第三次由乙投籃的概率;
(2)求前4次投籃中各投兩次的概率.
查看答案和解析>>
科目:高中數(shù)學 來源:浙江省富陽市2009-2010學年度高一數(shù)學期中試卷 題型:解答題
(本小題滿分8分)已知、、為的三內(nèi)角,且其對邊分別為、、,若.
(1)求; (2)若,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com