【題目】某水果批發(fā)商銷售進價為每箱40元的蘋果,假設每箱售價不低于50元且不得高于55元,市場調查發(fā)現(xiàn),若每箱以50元的價格銷售,平均每天銷售90箱,價格每提高1元,平均每天少銷售3.

1)求平均每天的銷售量y(箱)與銷售單價x(元/箱)之間的函數(shù)關系式.

2)求該批發(fā)商平均每天的銷售利潤w(元)與銷售單價x(元/箱)之間的函數(shù)關系式.

3)當每箱蘋果的售價為多少元時,每天可以獲得最大利潤?最大利潤是多少?

【答案】1;

2;

355元時,最大利潤為1125

【解析】

1)由題意可得,化簡即可.

2)因為該批發(fā)商平均每天的銷售利潤=平均每天的銷售量×每箱銷售利潤,列出表達式即可.

3)由(2)的表達式配方即可求出最值.

解:(1)根據(jù)題意,得,化簡得.

2)因為該批發(fā)商平均每天的銷售利潤=平均每天的銷售量×每箱銷售利潤,

所以.

3)因為,

所以當時,x的增大而增大.

,,所以當時,有最大值,最大值為1125.

所以當每箱蘋果的售價為55元時,每天可以獲得最大利潤,最大利潤為1125.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=ex+asinx,x(π,+),下列說法正確的是(

A.a=1時,f(x)(0f(0))處的切線方程為2xy+1=0

B.a=1時,f(x)存在唯一極小值點x0且-1f(x0)0

C.對任意a0f(x)(π,+)上均存在零點

D.存在a0,f(x)(π,+)上有且只有一個零點

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖是某校高三(1)班的一次數(shù)學知識競賽成績的莖葉圖(圖中僅列出的數(shù)據(jù))和頻率分布直方圖.

(1)求分數(shù)在的頻率及全班人數(shù);

(2)求頻率分布直方圖中的;

(3)若要從分數(shù)在之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數(shù)在之間的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究性學習小組調查研究學生使用智能手機對學習的影響.部分統(tǒng)計數(shù)據(jù)如下表:

使用智能手機

不使用智能手機

合計

學習成績優(yōu)秀

4

8

12

學習成績不優(yōu)秀

16

2

18

合計

20

10

30

經計算,則下列選項正確的是(

0.50

0.25

0.1

0.050

0.010

0.005

0.001

0.455

1.323

2.706

3.841

6.635

7.879

10.828

A.99.5%的把握認為使用智能手機對學習有影響

B.99.5%的把握認為使用智能手機對學習無影響

C.99.9%的把握認為使用智能手機對學習有影響

D.99.9%的把握認為使用智能手機對學習無影響

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某花圃為提高某品種花苗質量,開展技術創(chuàng)新活動,在AB實驗地分別用甲、乙方法培育該品種花苗.為觀測其生長情況,分別在實驗地隨機抽取各50株,對每株進行綜合評分,將每株所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80及以上的花苗為優(yōu)質花苗.

1)求圖中a的值;

2)用樣本估計總體,以頻率作為概率,若在A,B兩塊試驗地隨機抽取3棵花苗,求所抽取的花苗中的優(yōu)質花苗數(shù)的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)z滿足|z|= 的虛部為2,z所對應的點在第一象限,

(1)z;

(2)z,z2,z-z2在復平面上對應的點分別為A,B,C,cosABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩名射手互不影響地進行射擊訓練,根據(jù)以往的數(shù)據(jù)統(tǒng)計,他們射擊成績的分布列如下表所示.

射手甲

射手乙

環(huán)數(shù)

環(huán)數(shù)

概率

概率

1)若甲射手共有發(fā)子彈,一旦命中環(huán)就停止射擊,求他剩余發(fā)子彈的概率;

2)若甲、乙兩名射手各射擊,次射擊中恰有次命中環(huán)的概率;

3)若甲、乙兩名射手各射擊,記所得的環(huán)數(shù)之和為,的概率分布.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面四邊形中,,,,,將三角形沿翻折到三角形的位置,平面平面,中點.

(Ⅰ)求證:

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的公共點為.

求直線的斜率;

Ⅱ)若點分別為曲線上的動點,當取最大值時,求四邊形的面積.

查看答案和解析>>

同步練習冊答案