在等差數(shù)列中,,前項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),,且,的公比.
(1)求與;(2)求.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列滿足:,,.
(Ⅰ)求的通項(xiàng)公式及前項(xiàng)和;
(Ⅱ)已知是等差數(shù)列,為前項(xiàng)和,且,.求的通項(xiàng)公式,并證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足,且,
(1)當(dāng)時,求出數(shù)列的所有項(xiàng);
(2)當(dāng)時,設(shè),證明:;
(3)設(shè)(2)中的數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列的公差為,且成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的首項(xiàng),公差,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè)數(shù)列對任意的,均有成立,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知實(shí)數(shù),求證:;
(2)在數(shù)列{an}中,,寫出并猜想這個數(shù)列的通項(xiàng)公式達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列是等比數(shù)列,,公比是的展開式中的第二項(xiàng)(按x的降冪排列).
(1)用表示通項(xiàng)與前n項(xiàng)和;
(2)若,用表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)數(shù)列的前項(xiàng)和.數(shù)列滿足:.
(1)求的通項(xiàng).并比較與的大小;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
下圖是一個按照某種規(guī)律排列出來的三角形數(shù)陣
假設(shè)第行的第二個數(shù)為
(1)依次寫出第七行的所有7個數(shù)字(不必說明理由);
(2)寫出與的遞推關(guān)系(不必證明),并求出的通項(xiàng)公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com