精英家教網 > 高中數學 > 題目詳情
已知橢圓C:=1(b>0),直線l:y=mx+1,若對任意的m∈R,直線l與橢圓C恒有公共點,則實數b的取值范圍是(  )
A.[1,4)B.[1,+∞)
C.[1,4)∪(4,+∞)D.(4,+∞)
C
直線恒過定點(0,1),只要該點在橢圓內部或橢圓上即可,故只要b≥1且b≠4.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知圓G:經過橢圓的右焦點F及上頂點B,過橢圓外一點(m,0)()傾斜角為的直線L交橢圓與C、D兩點.
(1)求橢圓的方程;
(2)若右焦點F在以線段CD為直徑的圓E的內部,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

橢圓的對稱中心在坐標原點,一個頂點為,右焦點F與點 的距離為2。
(1)求橢圓的方程;
(2)斜率的直線與橢圓相交于不同的兩點M,N滿足,求直線l的方程。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過點M(-2,0)的直線l與橢圓x2+2y2=2交于P1,P2,線段P1P2的中點為P.設直線l的斜率為k1(k1≠0),直線OP(O為坐標原點)的斜率為k2,則k1k2等于(  )
A.-2B.2C.-D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓=1(a>b>0)的兩頂點為A(a,0),B(0,b),且左焦點為F,△FAB是以角B為直角的直角三角形,則橢圓的離心率e為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知是直線被橢圓所截得的線段的中點,則直線的方程是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的一個焦點為,離心率為.
(1)求橢圓的標準方程;
(2)若動點為橢圓外一點,且點到橢圓的兩條切線相互垂直,求點的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓.
(1)求橢圓的離心率;
(2)設為原點,若點在橢圓上,點在直線上,且,試判斷直線與圓的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

橢圓的左、右焦點為,過作直線交C于A,B兩點,若是等腰直角三角形,且,則橢圓C的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案