某幾何體的三視圖如圖,若該幾何體的所有頂點(diǎn)都在一個(gè)球面上,則該球面的表面積為( 。
A、4π
B、
28
3
π
C、
44
3
π
D、20π
考點(diǎn):球內(nèi)接多面體,球的體積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由三視圖知,幾何體是一個(gè)三棱柱,三棱柱的底面是邊長(zhǎng)為2的正三角形,側(cè)棱長(zhǎng)是2,根據(jù)三棱柱的兩個(gè)底面的中心的中點(diǎn)與三棱柱的頂點(diǎn)的連線就是外接球的半徑,求出半徑即可求出球的表面積.
解答: 解:由三視圖知,幾何體是一個(gè)三棱柱,三棱柱的底面是邊長(zhǎng)為2的正三角形,側(cè)棱長(zhǎng)是2,
三棱柱的兩個(gè)底面的中心的中點(diǎn)與三棱柱的頂點(diǎn)的連線就是外接球的半徑,
r=
(
2
3
×
3
)2+12
=
7
3
,球的表面積4πr2=4π×
7
3
=
28
3
π.
故選:B.
點(diǎn)評(píng):本題考查了由三視圖求三棱柱的外接球的表面積,利用棱柱的幾何特征求外接球的半徑是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在鈍角三角形ABC中,a、b、c分別是角A、B、C的對(duì)邊,
m
=(2sinB-sinC,cosC),
n
=(sinA,cosA),且
m
n

(1)求角A的大;
(2)求函數(shù)y=2sin2B+cos(
π
3
-2B)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,復(fù)數(shù)
4+2i
1-i
的虛部是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
b
、
c
的夾角都是60°,而
b
c
,且|
a
|=|
b
|=|
c
|=1,則(
a
-2
c
)•(
b
+
c
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面向量
a
,
b
e
滿足|
e
|=1,
a
e
=1,
b
e
=2,|
a
-
b
|=2,則
a
b
的最小值為( 。
A、
1
2
B、
5
4
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=12sin(2x+
π
6
)+5sin(
π
3
-2x)的最大值為(  )
A、6+
5
3
2
B、17
C、13
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不全相等的五個(gè)數(shù)a、b、c、m、n具有關(guān)系如下:a、b、c成等比數(shù)列,a、m、b和b、n、c都成等差數(shù)列,則
a
m
+
c
n
=( 。
A、-2B、0C、2D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

和式
5
i=1
(yi+1)可表示為( 。
A、(y1+1)+(y5+1)
B、y1+y2+y3+y4+y5+1
C、y1+y2+y3+y4+y5+5
D、(y1+1)(y2+1)…(y5+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(3,0),
b
=(-5,5),則
a
b
的夾角為( 。
A、
π
4
B、
4
C、
π
3
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案