已知直線,求直線的夾角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1為曲線y=x2+x-2在點(diǎn)(1,0)處的切線,l2為該曲線的另一條切線,且l1⊥l2
(Ⅰ)求直線l2的方程;
(Ⅱ)求由直線l1、l2和x軸所圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•河北區(qū)一模)已知橢圓C的方程為 
x2
a2
+
y2
b2
=1 
(a>b>0),過其左焦點(diǎn)F1(-1,0)斜率為1的直線交橢圓于P、Q兩點(diǎn).
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共線,求橢圓C的方程;
(Ⅱ)已知直線l:x+y-
1
2
=0,在l上求一點(diǎn)M,使以橢圓的焦點(diǎn)為焦點(diǎn)且過M點(diǎn)的雙曲線E的實(shí)軸最長,求點(diǎn)M的坐標(biāo)和此雙曲線E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l滿足下列兩個(gè)條件:
(1)過直線y=-x+1和直線y=2x+4的交點(diǎn); 
(2)與直線x-3y+2=0垂直,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l被兩平行直線2x-y+1=0和2x-y-3=0所截得的線段長為2,且直線l過點(diǎn)(1,0),求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案