某公司計(jì)劃在迎春節(jié)聯(lián)歡會(huì)中設(shè)一項(xiàng)抽獎(jiǎng)活動(dòng):在一個(gè)不透明的口袋中裝入外形一樣號(hào)碼分別為1,2,3,…,10的十個(gè)小球。活動(dòng)者一次從中摸出三個(gè)小球,三球號(hào)碼有且僅有兩個(gè)連號(hào)的為三等獎(jiǎng),獎(jiǎng)金30元;三球號(hào)碼都連號(hào)為二等獎(jiǎng),獎(jiǎng)金60元;三球號(hào)碼分別為1,5,10為一等獎(jiǎng),獎(jiǎng)金240元;其余情況無獎(jiǎng)金。
(1)求員工甲抽獎(jiǎng)一次所得獎(jiǎng)金ξ的分布列與期望;
(2)員工乙幸運(yùn)地先后獲得四次抽獎(jiǎng)機(jī)會(huì),他得獎(jiǎng)次數(shù)的方差是多少?
(1)分布列詳見解析,;(2).

試題分析:本題主要考查生活中的概率知識(shí),離散型隨機(jī)變量的分布列和數(shù)學(xué)期望以及二項(xiàng)分布的方差問題,考查學(xué)生的分析能力和計(jì)算能力.第一問,10個(gè)球中摸3個(gè),所以基本事件總數(shù)為的可能取值為4種,分別數(shù)出每一種情況符合題意的種數(shù),與基本事件總數(shù)相除求出4個(gè)概率值,列出分布列,利用求期望;第二問,利用第一問分布列的結(jié)論,用間接法先求出乙一次抽獎(jiǎng)中獎(jiǎng)的概率,通過分析題意,可得中獎(jiǎng)次數(shù)符合二項(xiàng)分布,利用的公式計(jì)算方差.
試題解析:(1)甲抽獎(jiǎng)一次,基本事件的總數(shù)為,獎(jiǎng)金的所有可能取值為0,30,60,240.
一等獎(jiǎng)的情況只有一種,所有獎(jiǎng)金為120元的概率為,
三球連號(hào)的情況有1,2,3;2,3,4;……8,9,10共8種,得60元的概率為
僅有兩球連號(hào)中,對(duì)應(yīng)1,2與9,10的各有7種:對(duì)應(yīng)2,3;3,4;……8,9各有6種.
得獎(jiǎng)金30元的概率為
得獎(jiǎng)金0元的概率為,    4分
的分布列為:
    6分
    8分
(2)由(1)可得乙一次抽獎(jiǎng)中中獎(jiǎng)的概率為
四次抽獎(jiǎng)是相互獨(dú)立的,所以中獎(jiǎng)次數(shù)
.    12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某中學(xué)從高中三個(gè)年級(jí)選派4名教師和20名學(xué)生去當(dāng)文明交通宣傳志愿者,20名學(xué)生的名額分配為高一12人,高二6人,高三2人.
(1)若從20名學(xué)生中選出3人做為組長,求他們中恰好有1人是高一年級(jí)學(xué)生的概率;
(2)若將4名教師隨機(jī)安排到三個(gè)年級(jí)(假設(shè)每名教師加入各年級(jí)是等可能的,且各位教師的選擇是相互獨(dú)立的),記安排到高一年級(jí)的教師人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某品牌的汽車4S店,對(duì)最近100位采用分期付款的購車者進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表所示:
付款方式
分1期
分2期
分3期
分4期
分5期
頻數(shù)
40
20

10

已知分3期付款的頻率為0.2,4S店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元;分2期或3期付款,其利潤為1.5萬元;分4期或5期付款,其利潤為2萬元.用表示經(jīng)銷一輛汽車的利潤.
(1)求上表中的值;
(2)若以頻率作為概率,求事件:“購買該品牌汽車的3位顧客中,至多有1位采用3期付款”的概率;(3)求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個(gè)盒子中裝有分別標(biāo)有數(shù)字1、2、3、4的4個(gè)大小、形狀完全相同的小球,現(xiàn)從中有放回地隨機(jī)抽取2個(gè)小球,抽取的球的編號(hào)分別記為、,記.
(Ⅰ)求取最大值的概率;
(Ⅱ)求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

選聘高校畢業(yè)生到村任職,是黨中央作出的一項(xiàng)重大決策,這對(duì)培養(yǎng)社會(huì)主義新農(nóng)村建設(shè)帶頭人、引導(dǎo)高校畢業(yè)生面向基層就業(yè)創(chuàng)業(yè),具有重大意義。為了響應(yīng)國家號(hào)召,某大學(xué)決定從符合條件的6名(其中男生4人,女生2人)報(bào)名大學(xué)生中選擇3人,到某村參加村委會(huì)主任應(yīng)聘考核。
(Ⅰ)設(shè)所選3人中女生人數(shù)為,求的分布列及數(shù)學(xué)期望;
(Ⅱ)在男生甲被選中的情況下,求女生乙也被選中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

二項(xiàng)式(x-
1
x
)n
展開式中,僅有第五項(xiàng)的二項(xiàng)式系數(shù)最大,則其常數(shù)項(xiàng)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
設(shè)a、b、c分別是先后擲一枚質(zhì)地均勻的正方體骰子三次得到的點(diǎn)數(shù).
(1)求使函數(shù)在R上不存在極值點(diǎn)的概率;
(2)設(shè)隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知隨機(jī)變量X~B(6,0.4),則當(dāng)η=-2X+1時(shí),D(η)=(  )
A.-1.88B.-2.88C.5. 76D.6.76

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)隨機(jī)變量X的分布列為P(X=k)=(k=1,2,3,4,5),則P=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案