已知函數(shù),函數(shù)是區(qū)間上的減函數(shù).
(1)求的最大值;
(2)若恒成立,求的取值范圍;
(3)討論關(guān)于的方程的根的個(gè)數(shù).

(1)的最大值為(2).(3)當(dāng)方程無解;
當(dāng)時(shí),方程有一個(gè)根;當(dāng)時(shí),方程有兩個(gè)根.

解析試題分析:(1)由題意由于,所以函數(shù),又因?yàn)樵摵瘮?shù)是在區(qū)間上的減函數(shù),所以可以得到的范圍;
(2)由對(duì)所有滿足條件的實(shí)數(shù)及對(duì)任意上恒成立 解出即可;
(3)利用方程與函數(shù)的關(guān)系可以構(gòu)造成兩函數(shù)圖形的交點(diǎn)個(gè)數(shù)加以分析求解.
試題解析:(1),
上單調(diào)遞減,

在[-1,1]上恒成立,,故的最大值為
(2)由題意

(其中),恒成立,
,
,則有恒成立,
,則
恒成立,
綜上,
(3)由


當(dāng)上為增函數(shù);
當(dāng)時(shí),為減函數(shù);
當(dāng)
方程無解;
當(dāng)時(shí),方程有一個(gè)根;
當(dāng)時(shí),方程有兩個(gè)根.
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),其圖象與軸交于,兩點(diǎn),且x1x2
(1)求的取值范圍;
(2)證明:為函數(shù)的導(dǎo)函數(shù));
(3)設(shè)點(diǎn)C在函數(shù)的圖象上,且△ABC為等腰直角三角形,記,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場(chǎng)銷售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷售量(單位:千克)與銷售價(jià)格(單位:元/千克)滿足關(guān)系式其中為常數(shù)。己知銷售價(jià)格為5元/千克時(shí),每日可售出該商品11千克。
(1)求的值;
(2)若該商品的成本為3元/千克,試確定銷售價(jià)格的值,使商場(chǎng)每日銷售該商品所獲得的利潤最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)與函數(shù)在點(diǎn)處有公共的切線,設(shè).
(1) 求的值
(2)求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于x的函數(shù)
(1)當(dāng)時(shí),求函數(shù)的極值;
(2)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中N*,aR,e是自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的零點(diǎn);
(2)若對(duì)任意N*,均有兩個(gè)極值點(diǎn),一個(gè)在區(qū)間(1,4)內(nèi),另一個(gè)在區(qū)間[1,4]外,求a的取值范圍;
(3)已知k,mN*,k<m,且函數(shù)在R上是單調(diào)函數(shù),探究函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 
(1)函數(shù)在區(qū)間上是增函數(shù)還是減函數(shù)?證明你的結(jié)論;
(2)當(dāng)時(shí),恒成立,求整數(shù)的最大值;
(3)試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)、為常數(shù)),在時(shí)取得極值.
(1)求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)數(shù)列滿足),,數(shù)列的前項(xiàng)和為,
求證:,是自然對(duì)數(shù)的底).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中為常數(shù)且)在處取得極值.
(I) 當(dāng)時(shí),求的單調(diào)區(qū)間;
(II) 若上的最大值為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案