【題目】已知橢圓 上的點(diǎn)到橢圓一個焦點(diǎn)的距離的最大值是最小值的倍,且點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)任作一條直線,與橢圓交于不同于點(diǎn)的、兩點(diǎn),與直線交于點(diǎn),記直線、、的斜率分別為、、.試探究與的關(guān)系,并證明你的結(jié)論.
【答案】(Ⅰ);(Ⅱ)答案見解析.
【解析】試題分析:
(Ⅰ)橢圓上的點(diǎn)到橢圓一個焦點(diǎn)的距離的最大值和最小值分別為,,據(jù)此可得,設(shè)橢圓的方程為:,結(jié)合點(diǎn)在橢圓上可得橢圓的方程為.
(Ⅱ)很明顯直線的斜率存在,設(shè)直線的方程為:即,,為與橢圓的兩個交點(diǎn).聯(lián)立直線方程與橢圓方程有.結(jié)合韋達(dá)定理可得.由可得,則.綜上可知.
試題解析:
(Ⅰ)因為橢圓上的點(diǎn)到橢圓一個焦點(diǎn)的距離的最大值和最小值分別為,,所以依題意有:,
∵,∴.故可設(shè)橢圓的方程為:,
因為點(diǎn)在橢圓上,所以將其代入橢圓的方程得.
∴橢圓的方程為.
(Ⅱ)依題意,直線不可能與軸垂直,故可設(shè)直線的方程為:即,
,為與橢圓的兩個交點(diǎn).
將代入方程化簡得:.
所以,.
.
又由 ,解得,,
即點(diǎn)的坐標(biāo)為,所以.
因此,與的關(guān)系為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為常數(shù)且)在處取得極值.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計 |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計值.
(1)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評判(表示相應(yīng)事件的概率);
①;
②;
③
評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設(shè)備的性能等級.
(2)將直徑小于等于或直徑大于的零件認(rèn)為是次品.
①從設(shè)備的生產(chǎn)流水線上隨意抽取2件零件,計算其中次品個數(shù)的數(shù)學(xué)期望;
②從樣本中隨意抽取2件零件,計算其中次品個數(shù)的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018江西撫州市高三八校聯(lián)考】如圖,在三棱錐中, , , , ,平面平面, 為的中點(diǎn).
(I)求證: 平面;
(II)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),離心率為,右焦點(diǎn)到直線的距離為2.
(1)求橢圓的方程;
(2)橢圓下頂點(diǎn)為,直線()與橢圓相交于不同的兩點(diǎn),當(dāng)時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)若函數(shù)在上存在兩個極值點(diǎn),且,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐,平面,底面為直角梯形,,,,,是中點(diǎn).
(1)求證:平面;
(2)若直線與平面所成角的正切值為,是的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年12月,針對國內(nèi)天然氣供應(yīng)緊張的問題,某市政府及時安排部署,加氣站采取了緊急限氣措施,全市居民打響了節(jié)約能源的攻堅戰(zhàn).某研究人員為了了解天然氣的需求狀況,對該地區(qū)某些年份天然氣需求量進(jìn)行了統(tǒng)計,并繪制了相應(yīng)的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合年度天然氣需求量 (單位:千萬立方米)與年份 (單位:年)之間的關(guān)系.并且已知關(guān)于的線性回歸方程是,試確定的值,并預(yù)測2018年該地區(qū)的天然氣需求量;
(Ⅱ)政府部門為節(jié)約能源出臺了《購置新能源汽車補(bǔ)貼方案》,該方案對新能源汽車的續(xù)航里程做出了嚴(yán)格規(guī)定,根據(jù)續(xù)航里程的不同,將補(bǔ)貼金額劃分為三類,A類:每車補(bǔ)貼1萬元,B類:每車補(bǔ)貼2.5萬元,C類:每車補(bǔ)貼3.4萬元.某出租車公司對該公司60輛新能源汽車的補(bǔ)貼情況進(jìn)行了統(tǒng)計,結(jié)果如下表:
為了制定更合理的補(bǔ)貼方案,政府部門決定利用分層抽樣的方式了解出租車公司新能源汽車的補(bǔ)貼情況,在該出租車公司的60輛車中抽取6輛車作為樣本,再從6輛車中抽取2輛車進(jìn)一步跟蹤調(diào)查,求恰好有1輛車享受3.4萬元補(bǔ)貼的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是常數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程,并證明對任意,切線經(jīng)過定點(diǎn);
(Ⅱ)證明:時,有兩個零點(diǎn)、,且.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com