【題目】甲、乙兩班舉行數(shù)學(xué)知識競賽,參賽學(xué)生的競賽得分統(tǒng)計(jì)結(jié)果如下表:

班級

參賽人數(shù)

平均數(shù)

中位數(shù)

眾數(shù)

方差

45

83

86

85

82

45

83

84

85

133

某同學(xué)分析上表后得到如下結(jié)論:

①甲、乙兩班學(xué)生的平均成績相同;

②乙班優(yōu)秀的人數(shù)少于甲班優(yōu)秀的人數(shù)(競賽得分分為優(yōu)秀);

③甲、乙兩班成績?yōu)?/span>85分的學(xué)生人數(shù)比成績?yōu)槠渌档膶W(xué)生人數(shù)多;

④乙班成績波動(dòng)比甲班小.

其中正確結(jié)論有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】C

【解析】

①看兩班的平均數(shù)易知正確;②看兩班的中位數(shù)正確;③看兩班的眾數(shù)正確;④看兩班的方差.

①從表看出甲、乙兩班學(xué)生的平均成績相同,正確;

②因?yàn)橐野嗟闹形粩?shù)比甲班的小,所以正確;

③根據(jù)甲、乙兩班的眾數(shù),所以正確;

④因?yàn)橐野嗟姆讲畋燃椎拇,所以波?dòng)比甲班大,所以錯(cuò)誤

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購物越來越受到人們的喜愛,各大購物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費(fèi)用也不斷增加.下表是某購物網(wǎng)站20181月~8月促銷費(fèi)用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).

月份

1

2

3

4

5

6

7

8

促銷費(fèi)用

2

3

6

10

13

21

15

18

產(chǎn)品銷量

1

1

2

3

3.5

5

4

4.5

1)根據(jù)數(shù)據(jù)可知具有線性相關(guān)關(guān)系,請建立的回歸方程(系數(shù)精確到0.01);

2)已知6月份該購物網(wǎng)站為慶祝成立1周年,特制定獎(jiǎng)勵(lì)制度:以(單位:件)表示日銷量,,則每位員工每日獎(jiǎng)勵(lì)100元;,則每位員工每日獎(jiǎng)勵(lì)150元,,則每位員工每日獎(jiǎng)勵(lì)200.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請你計(jì)算某位員工當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)大約多少元(當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)精確到百分位).

參考數(shù)據(jù):,,其中,分別為第個(gè)月的促銷費(fèi)用和產(chǎn)品銷量,.

參考公式:①對于一組數(shù)據(jù),,,其回歸方程的斜率和截距的最小二乘估計(jì)分別為,;②若隨機(jī)變量服從正態(tài)分布,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且圓過橢圓的上,下頂點(diǎn).

1)求橢圓的方程.

2)若直線的斜率為,且直線交橢圓、兩點(diǎn),點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線的斜率之和是否為定值,如果是,請求出此定值:如果不是,請說明理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列是公差不為零等差數(shù)列,滿足;數(shù)列的前項(xiàng)和為,且滿足.

1)求數(shù)列的通項(xiàng)公式;

2)在之間插入1個(gè)數(shù),使成等差數(shù)列;在之間插入2個(gè)數(shù),使成等差數(shù)列;……;在之間插入個(gè)數(shù),使成等差數(shù)列,

i)求;

ii)是否存在正整數(shù),使成立?若存在,求出所有的正整數(shù)對;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),判斷在定義域上的單調(diào)性;

2)若對定義域上的任意的,有恒成立,求實(shí)數(shù)a的取值范圍;

3)證明:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線處的切線方程為,求實(shí)數(shù),的值;

2)若,且在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍;

3)若,且,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),試討論函數(shù)的單調(diào)性,并求出函數(shù)的極值;

2)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的所有零點(diǎn);

(2),證明函數(shù)不存在極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校成立了數(shù)學(xué)、英語、音樂3個(gè)課外興趣小組,3個(gè)小組分別有39、32、33個(gè)成員,一些成員參加了不止一個(gè)小組,具體情況如圖所示.

現(xiàn)隨機(jī)選取一個(gè)成員,他屬于至少2個(gè)小組的概率是________,他屬于不超過2個(gè)小組的概率是________

查看答案和解析>>

同步練習(xí)冊答案