【題目】已知在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為 .
(1)求圓C的普通方程和直線l的直角坐標(biāo)方程;
(2)設(shè)M是直線l上任意一點(diǎn),過(guò)M做圓C切線,切點(diǎn)為A、B,求四邊形AMBC面積的最小值.
【答案】
(1)解:圓C的參數(shù)方程為 (θ為參數(shù)),
所以圓C的普通方程為(x﹣3)2+(y+4)2=4.…(2分)
由 得ρcosθ+ρsinθ=2,
∵ρcosθ=x,ρsinθ=y,
∴直線l的直角坐標(biāo)方程x+y﹣2=0
(2)解:圓心C(3,﹣4)到直線l:x+y﹣2=0的距離為d= =
由于M是直線l上任意一點(diǎn),則|MC|≥d= ,
∴四邊形AMBC面積S=2× ACMA=AC =2 ≥2
∴四邊形AMBC面積的最小值為
【解析】(1)根據(jù)參數(shù)方程和極坐標(biāo)方程與普通方程的關(guān)系進(jìn)行轉(zhuǎn)化求解即可.(2)求出圓心坐標(biāo)以及圓心到直線的距離,結(jié)合四邊形的面積公式進(jìn)行求解即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)今年初用72萬(wàn)元購(gòu)買一套新設(shè)備用于生產(chǎn),該設(shè)備第一年需各種費(fèi)用12萬(wàn)元,從第二年起,每年所需費(fèi)用均比上一年增加4萬(wàn)元,該設(shè)備每年的總收入為50萬(wàn)元,設(shè)生產(chǎn)x年的 盈利總額為y萬(wàn)元.寫(xiě)出y與x的關(guān)系式;
①經(jīng)過(guò)幾年生產(chǎn),盈利總額達(dá)到最大值?最大值為多少?
②經(jīng)過(guò)幾年生產(chǎn),年平均盈利達(dá)到最大值?最大值為多少
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣x,若f(cos2θ+2msinθ)+f(﹣2﹣2m)>0對(duì)任意的θ∈(0, )恒成立,則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知圓的圓心是直線與軸的交點(diǎn),且與直線相切,求圓的標(biāo)準(zhǔn)方程;
(2)已知圓,直線過(guò)點(diǎn)與圓相交于兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求a的取值范圍;
(2)記兩個(gè)極值點(diǎn)分別為x1 , x2 , 且x1<x2 . 已知λ>0,若不等式e1+λ<x1x2λ恒成立,求λ的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某街道居委會(huì)擬在EF地段的居民樓正南方向的空白地段AE上建一個(gè)活動(dòng)中心,其中AE長(zhǎng)為30米.活動(dòng)中心東西走向,與居民樓平行.從東向西看活動(dòng)中心的截面圖的下部分是長(zhǎng)方形ABCD,上部分是以DC為直徑的半圓.為了保證居民樓住戶的采光要求,活動(dòng)中心在與半圓相切的太陽(yáng)光線照射下落在居民樓上的影長(zhǎng)GE不超過(guò)2.5米,其中該太陽(yáng)光線與水平線的夾角θ滿足tan θ=.
(1)若設(shè)計(jì)AB=18米,AD=6米,問(wèn)能否保證上述采光要求?
(2)在保證上述采光要求的前提下,如何設(shè)計(jì)AB與AD的長(zhǎng)度,可使得活動(dòng)中心的截面面積最大? (注:計(jì)算中π取3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:,直線 ,過(guò)的一條動(dòng)直線與直線相交于N,與圓C相交于P,Q兩點(diǎn),M是PQ中點(diǎn).
(1)當(dāng)時(shí),求直線的方程;
(2)設(shè),試問(wèn)是否為定值,若為定值,請(qǐng)求出的值;若不為定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以下四個(gè)關(guān)于圓錐曲線的命題:
①設(shè)A,B是兩個(gè)定點(diǎn),k為非零常數(shù),若|PA|-|PB|=k,則P的軌跡是雙曲線;
②過(guò)定圓C上一定點(diǎn)A作圓的弦AB,O為原點(diǎn),若.則動(dòng)點(diǎn)P的軌跡是橢圓;
③方程的兩根可以分別作為橢圓和雙曲線的離心率;
④雙曲線與橢圓有相同的焦點(diǎn).
其中正確命題的序號(hào)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com