【題目】已知函數(shù).

I)若曲線存在斜率為-1的切線,求實數(shù)a的取值范圍;

II)求的單調(diào)區(qū)間;

III)設(shè)函數(shù),求證:當(dāng)時, 上存在極小值.

【答案】(Ⅰ) .(Ⅱ)答案見解析;(Ⅲ)證明見解析.

【解析】試題分析:

1)求出函數(shù)的導(dǎo)數(shù),問題轉(zhuǎn)化為存在大于的實數(shù)根,根據(jù)時遞增,求出的范圍即可;

2)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍,判斷導(dǎo)數(shù)的符號,求出函數(shù)的單調(diào)區(qū)間即可;

3)求出函數(shù),根據(jù),得到存在,滿足,從而讓得到函數(shù)單調(diào)區(qū)間,求出函數(shù)的極小值,證處結(jié)論即可.

試題解析:

I)由.

由已知曲線存在斜率為-1的切線,所以存在大于零的實數(shù)根,

存在大于零的實數(shù)根,因為時單調(diào)遞增,

所以實數(shù)a的取值范圍.

II)由可得

當(dāng)時, ,所以函數(shù)的增區(qū)間為;

當(dāng)時,若, ,若, ,

所以此時函數(shù)的增區(qū)間為,減區(qū)間為.

III)由及題設(shè)得,

可得,由(II)可知函數(shù)上遞增,

所以,取,顯然,

,所以存在滿足,即存在滿足,所以, 在區(qū)間(1,+∞)上的情況如下:

0 +

極小

所以當(dāng)-1<a<0時,gx)在(1,+∞)上存在極小值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題分)

已知函數(shù),若存在,使得,則稱是函數(shù)的一個不動點,設(shè)二次函數(shù)

)當(dāng), 時,求函數(shù)的不動點.

)若對于任意實數(shù),函數(shù)恒有兩個不同的不動點,求實數(shù)的取值范圍.

)在()的條件下,若函數(shù)的圖象上 兩點的橫坐標(biāo)是函數(shù)的不動點,且直線是線段的垂直平分線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分別是A1B,B1C1的中點.

(1)求證:MN//平面ACC1A1;

(2)求點N到平面MBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項參賽作品預(yù)測如下:

甲說:“作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“, 兩項作品未獲得一等獎”;

丁說:“作品獲得一等獎”.

若這四位同學(xué)只有兩位說的話是對的,則獲得一等獎的作品是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) .

(1)若直線與和圖象均相切,求直線的方程;

(2)是否存在使得按某種順序組成等差數(shù)列?若存在,這樣的有幾個?若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)axln x,其中a為常數(shù).

(1)當(dāng)a=-1時,求f(x)的單調(diào)遞增區(qū)間.

(2)當(dāng)0<<e時,若f(x)在區(qū)間(0e)上的最大值為-3,求a的值.

(3)當(dāng)a=-1時,試推斷方程|f(x)|是否有實數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù), .

1求證: ;

2若存在,使,的取值范圍

3若對任意的恒成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2016·廣州模擬)如圖,在三棱柱ABCA1B1C1中,側(cè)棱AA1⊥底面ABC,ABAC2AA1,BAC120°,D,D1分別是線段BC,B1C1的中點,過線段AD的中點PBC的平行線,分別交AB,AC于點MN.

(1)證明:MN⊥平面ADD1A1;

(2)求二面角AA1MN的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項都為正數(shù)的數(shù)列{an}滿足a1=1, =2an+1(an+1)-an.

(Ⅰ)求數(shù)列{an}的通項公式;

(Ⅱ)設(shè)bn,求數(shù)列{an·bn}的前n項和Tn.

查看答案和解析>>

同步練習(xí)冊答案