已知函數(shù)f(x)=lnx,g(x)=
a
x
(a>0),設F(x)=f(x)+g(x).
(Ⅰ)求F(x)的單調區(qū)間;
(Ⅱ)若以y=F(x)(x∈(0,3])圖象上任意一點P(x0,y0)為切點的切線的斜率k
1
2
恒成立,求實數(shù)a的最小值.
(Ⅲ)是否存在實數(shù)m,使得函數(shù)y=g(
2a
x2+1
)+m-1的圖象與y=f(1+x2)的圖象恰好有四個不同的交點?若存在,求出m的取值范圍,若不存在,說明理由.
(I)F(x)=f(x)+g(x)=lnx+
a
x
(x>0)
,F(x)=
1
x
-
a
x2
=
x-a
x2
(x>0)

因為a>0由F′(x)>0⇒x∈(a,+∞),所以F(x)在(a,+∞)上單調遞增;
由F′(x)<0⇒x∈(0,a),
所以F(x)在(0,a)上單調遞減.
(Ⅱ)由題意可知k=F′(x0)=
x0-a
x20
1
2
對任意0<x0≤3恒成立,
即有x0-
1
2
x20
≤a
對任意0<x0≤3恒成立,即(x0-
1
2
x20
)max≤a
,
t=x0-
1
2
x20
=-
1
2
(
x20
-2x0)=-
1
2
(x0-1)2+
1
2
1
2
,
a≥
1
2
,即實數(shù)a的最小值為
1
2

(III)若y=g(
2a
x2+1
)+m-1═
1
2
x2+m-
1
2
的圖象與y=f(1+x2)=ln(x2+1)的圖象恰有四個不同交點,
1
2
x2+m-
1
2
=ln(x2+1)
有四個不同的根,
亦即m=ln(x2+1)-
1
2
x2+
1
2
有四個不同的根.
G(x)=ln(x2+1)-
1
2
x2+
1
2
,
G′(x)=
2x
x2+1
-x=
2x-x3-x
x2+1
=
-x(x+1)(x-1)
x2+1

當x變化時G'(x).G(x)的變化情況如下表:

由表格知:G(0)=
1
2
,G(1)=G(-1)=ln2>0

又因為G(2)=G(-2)=ln5-2+
1
2
1
2
可知,當m∈(
1
2
,ln2)
時,
方程m=ln(x2+1)-
1
2
x2+
1
2
有四個不同的解.
當m∈(
1
2
,ln2)時,y=g(
2a
x2+1
)+m-1=
1
2
x2+m-
1
2
的圖象與
y=f(1+x2)=ln(x2+1)的圖象恰有四個不同的交點.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

分為兩個數(shù),使其和為且立方之和最小,則這兩個數(shù)為            。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=ax2-lnx,x∈(0,e],其中e是自然對數(shù)的底數(shù),a∈R.
(Ⅰ)當a=1時,求函數(shù)f(x)的單調區(qū)間與極值;
(Ⅱ)是否存在實數(shù)a,使f(x)的最小值是3?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知a是實數(shù),函數(shù)f(x)=x2(x-a)
(1)如果f′(1)=3,求a的值;
(2)在(1)的條件下,求曲線y=f(x)在點(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1-a
x
-ax+ln
x
(a∈R)

(1)當a=0時,求f(x)在x=
1
2
處切線的斜率;
(2)當0≤a≤
1
2
時,討論f(x)的單調性;
(3)設g(x)=x2-2bx+3當a=
1
4
時,若對于任意x1∈(0,2),存在x2∈[1,2]使f(x1)≥g(x2)成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若曲線y=x3上的點P處的切線的斜率為3,則P點的坐標為( 。
A.(-2,-8)B.(-1,-1)C.(-2,-8)或(2,8)D.(-1,-1)或(1,1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3+x-16.求曲線y=f(x)在點(2,-6)處的切線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線y=x2-x上點A(2,2)處的切線與直線2x-y+5=0的夾角的正切值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線y=x-
1
x
在點(1,0)處的切線方程為( 。
A.y=2x-2B.y=x-1C.y=0D.y=-x+1

查看答案和解析>>

同步練習冊答案