連續(xù)拋擲兩枚正方體骰子(它們的六個面分別標(biāo)有數(shù)字1,2,3,4,5,6),記所得朝上的面的點(diǎn)數(shù)分別為xy,過坐標(biāo)原點(diǎn)和點(diǎn)P(x,y)的直線的傾斜角為θ,則θ60°的概率為(  )

A. B. C. D.

 

A

【解析】基本事件總數(shù)為6×636種.θ60°的必須是tan θ,則這樣的基本事件有(1,2),(1,3),,(1,6)(2,4),(2,5),(2,6),(3,6),共9種.

所以概率為.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一文科數(shù)學(xué)試卷(解析版) 題型:填空題

由空間向量,構(gòu)成的向量集合,則向量的模的最小值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)仿真模擬卷1練習(xí)卷(解析版) 題型:填空題

求方程xx1的解有如下解題思路:設(shè)f(x)xx,則f(x)R上單調(diào)遞減,且f(2)1,所以原方程有唯一解x2.類比上述解題思路,不等式x6(x2)(x2)3x2的解集是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷6練習(xí)卷(解析版) 題型:解答題

某高校組織自主招生考試,共有2 000名優(yōu)秀同學(xué)參加筆試,成績均介于195分到275分之間,從中隨機(jī)抽取50名同學(xué)的成績進(jìn)行統(tǒng)計(jì),將統(tǒng)計(jì)結(jié)果按如下方式分成8組:第1[195,205),第2[205,215),,第8[265,275].如圖是按上述分組方法得到的頻率分布直方圖,且筆試成績在260(260)以上的同學(xué)進(jìn)入面試.

(1)估計(jì)所有參加筆試的2 000名同學(xué)中,參加面試的同學(xué)人數(shù);

(2)面試時,每位同學(xué)抽取兩個問題,若兩個問題全答錯,則不能取得該校的自主招生資格;若兩個問題均回答正確且筆試成績在270分以上,則獲A類資格;其他情況下獲B類資格.現(xiàn)已知某中學(xué)有兩人獲得面試資格,且僅有一人筆試成績?yōu)?/span>270分以上,在回答兩個面試問題時,兩人對每一個問題正確回答的概率均為,求恰有一名同學(xué)獲得該高校B類資格的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷6練習(xí)卷(解析版) 題型:填空題

高三(1)班共有56人,學(xué)號依次為1,2,3,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個容量為4的樣本,已知學(xué)號為6,34,48的同學(xué)在樣本中,那么還有一個同學(xué)的學(xué)號應(yīng)為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷6練習(xí)卷(解析版) 題型:選擇題

總體由編號為01,02,,19,2020個個體組成,利用下面的隨機(jī)數(shù)表選取5個個體,選取方法是從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第5個個體的編號為(  )

7816 6572 0802 6314 0702 4369 9728 0198

3204 9234 4935 8200 3623 4869 6938 7481

A.08 B07 C02 D01

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷5練習(xí)卷(解析版) 題型:填空題

已知雙曲線x21的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線右支上一點(diǎn),則的最小值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷4練習(xí)卷(解析版) 題型:解答題

如圖,三棱柱ABCA1B1C1的側(cè)棱AA1底面ABC,ACB90°,E是棱CC1的中點(diǎn),FAB的中點(diǎn),ACBC1,AA12.

(1)求證:CF平面AB1E;

(2)求三棱錐CAB1E在底面AB1E上的高.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷2練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)sin2cos2xR(其中ω0)

(1)求函數(shù)f(x)的值域;

(2)若函數(shù)yf(x)的圖象與直線y=-1的兩個相鄰交點(diǎn)間的距離為,求函數(shù)yf(x)的單調(diào)增區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊答案