設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標(biāo)軸上截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形的頂點(diǎn)為原點(diǎn),邊所在直線的方程為,頂點(diǎn)的縱坐標(biāo)為.
(1)求邊所在直線的方程;
(2)求矩形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:()過點(diǎn)(2,0),且橢圓C的離心率為.
(1)求橢圓的方程;
(2)若動(dòng)點(diǎn)在直線上,過作直線交橢圓于兩點(diǎn),且為線段中點(diǎn),再過作直線.求直線是否恒過定點(diǎn),若果是則求出該定點(diǎn)的坐標(biāo),不是請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)P1(2,3)、P2(-4,5)和A(-1,2),求過點(diǎn)A且與點(diǎn)P1、P2距離相等的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C:x2+y2=9,點(diǎn)A(-5,0),直線l:x-2y=0.
(1)求與圓C相切,且與直線l垂直的直線方程;
(2)在直線OA上(O為坐標(biāo)原點(diǎn)),存在定點(diǎn)B(不同于點(diǎn)A),滿足:對于圓C上任一點(diǎn)P,都有為一常數(shù),試求所有滿足條件的點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直線過點(diǎn),直線的斜率為且過點(diǎn).
(1)求、的交點(diǎn)的坐標(biāo);
(2)已知點(diǎn),若直線過點(diǎn)且與線段相交,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(已知橢圓 經(jīng)過點(diǎn)其離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓相交于A、B兩點(diǎn),以線段為鄰邊作平行四邊形OAPB,其中頂點(diǎn)P在橢圓上,為坐標(biāo)原點(diǎn).求到直線距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com