【題目】某商場預計全年分批購入每臺價值為2000元的電視機共3600臺.每批都購入,且每批均需付運費400元.貯存購入所有的電視機全年所付保管費與每批購入電視機的總價值(不含運費)成正比,比例系數(shù)為,若每批購入400臺,則全年需用去運輸和保管總費用43600元.

(1)求的值;

(2)現(xiàn)在全年只有24000元資金用于支付這筆費用,請問能否恰當安排每批進貨的數(shù)量使資金夠用?寫出你的結論,并說明理由.

【答案】1;(2)只需每批購入臺,可以使資金夠用

【解析】

根據若每批購入臺,則全年需用去運費和保管費共元,求出比例;再求出運費和保管費的總費用關于每批購入臺數(shù)的函數(shù)解析式,然后利用基本不等式進行解答.

(1)設全年需用去的運費和保管費的總費用為

題中的比例系數(shù)設為,每批購入臺,則共需分批,每批費用

由題意知:

時,

解得:

(2)由(1)可得:(元)

當且僅當,即時等號成立

故只需每批購入臺,可以使資金夠用

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當時,求函數(shù)的單調區(qū)間;

(Ⅱ)若在區(qū)間上存在不相等的實數(shù),使成立,求的取值范圍;

(Ⅲ)若函數(shù)有兩個不同的極值點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論中錯誤的是( 。
A.設命題p:?x∈R,使+x+2<0,則¬P:?x∈R,都有+x+2≥0
B.若x,y∈R,則“x=y”是“xy≤取到等號”的充要條件
C.已知命題p和q,若p∧q為假命題,則命題p與q都為假命題
D.命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】F為拋物線的焦點,A、B是拋物線C上的兩個動點,O為坐標原點.

(I)若直線AB經過焦點F,且斜率為2,求線段AB的長度|AB|;

(II)OAOB時,求證:直線AB經過定點M(4,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx=|x-a|+x,其中a0

1)當a=3時,求不等式fx)≥x+4的解集;

2)若不等式fx)≥x+2a2x[1,3]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù).

(1)當時,解不等式;

(2)若命題“,”為真命題,求實數(shù)的取值范圍;

(3)若關于的方程的解集中恰好有一個元素,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,某公路 一側有一塊空地 ,其中 , .當?shù)卣當M在中間開挖一個人工湖△OMN,其中M,N都在邊AB上(MN不與A,B重合,MAN之間),且MON=30°.

(1)若M在距離A2 km處,求點M,N之間的距離;

(2)為節(jié)省投入資金,人工湖△OMN的面積要盡可能小.試確定M的位置,使△OMN的面積最小,并求出最小面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學家祖暅提出原理:“冪勢既同,則積不容異”.其中“冪”是截面積,“勢”是幾何體的高.原理的意思是:夾在兩個平行平面間的兩個幾何體,被任一平行于這兩個平行平面的平面所截,若所截的兩個截面的面積恒相等,則這兩個幾何體的體積相等.如圖所示,在空間直角坐標系的坐標平面內,若函數(shù)的圖象與軸圍成一個封閉區(qū)域,將區(qū)域沿軸的正方向上移4個單位,得到幾何體如圖一.現(xiàn)有一個與之等高的圓柱如圖二,其底面積與區(qū)域面積相等,則此圓柱的體積為( )

A. B. C. 2D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|x+2|﹣|x﹣1|
(I)畫出函數(shù)y=f(x)的圖象;
(II)若關于x的不等式f(x)+4≥|1﹣2m|有解,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案