【題目】已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.
(1)求的方程;
(2)若點在圓上,點為坐標原點,求的取值范圍.
【答案】(1);(2).
【解析】
(1)根據(jù)焦點坐標和離心率,結合橢圓中的關系,即可求得的值,進而得橢圓的標準方程.
(2)設出直線的方程為,由題意可知為中點.聯(lián)立直線與橢圓方程,由韋達定理表示出,由判別式可得;由平面向量的線性運算及數(shù)量積定義,化簡可得,代入弦長公式化簡;由中點坐標公式可得點的坐標,代入圓的方程,化簡可得,代入數(shù)量積公式并化簡,由換元法令,代入可得,再令及,結合函數(shù)單調性即可確定的取值范圍,即確定的取值范圍,因而可得的取值范圍.
(1)分別是橢圓的左焦點和右焦點,
則,橢圓的離心率為
則解得,
所以,
所以的方程為.
(2)設直線的方程為,點滿足,則為中點,點在圓上,設,
聯(lián)立直線與橢圓方程,化簡可得,
所以
則,化簡可得,
而
由弦長公式代入可得
為中點,則
點在圓上,代入化簡可得,
所以
令,則,,
令,則
令,則,
所以,
因為在內(nèi)單調遞增,所以,
即
所以
科目:高中數(shù)學 來源: 題型:
【題目】近年來,在新高考改革中,打破文理分科的“”模式初露端倪,其中語、數(shù)、外三門課為必考科目,剩下三門為選考科目選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分,假定省規(guī)定:選考科目按考生成績從高到低排列,按照占總體、、、分別賦分分、分、分、分,為了讓學生們體驗“賦分制”計算成績的方法,省某高中高一()班(共人)舉行了以此摸底考試(選考科目全考,單料全班排名),知這次摸底考試中的物理成績(滿分分)頻率分布直方圖,化學成績(滿分分)莖葉圖如圖所示,小明同學在這次考試中物理分,化學多分.
(1)采用賦分制后,求小明物理成績的最后得分;
(2)若小明的化學成績最后得分為分,求小明的原始成績的可能值;
(3)若小明必選物理,其他兩科從化學、生物、歷史、地理、政治五科中任選,求小明此次考試選考科目包括化學的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知、是橢圓上關于軸對稱的兩點,是的左焦點,.
(1)求橢圓的標準方程;
(2)斜率為的直線過點,和橢圓相交于、兩點,,.點坐標是,設的面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,點,是曲線上的任意一點,動點滿足
(1)求點的軌跡方程;
(2)經(jīng)過點的動直線與點的軌跡方程交于兩點,在軸上是否存在定點(異于點),使得?若存在,求出的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形是正方形,四邊形為矩形,,為的中點.
(1)求證:平面;
(2)二面角的大小可以為嗎?若可以求出此時的值,若不可以,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:(),點是的左頂點,點為上一點,離心率.
(1)求橢圓的方程;
(2)設過點的直線與的另一個交點為(異于點),是否存在直線,使得以為直徑的圓經(jīng)過點,若存在,求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,.
(1)求橢圓的標準方程;
(2)設、是橢圓上位于直線同側的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關系,并求證直線的斜率為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com