求下列函數(shù)的導數(shù).
(1)y=2xsin(2x-5)
(2)f(x)=ln
x2+1

(3)y=
2x
x2+1
考點:導數(shù)的運算
專題:導數(shù)的概念及應用
分析:根據(jù)導數(shù)公式和運算法則以及復合函數(shù)的求導法則計算即可.y′=(2x)′sin(2x-5)+2x[sinx(2x-5)]′iiiii
解答: 解:(1)y′=(2x)′sin(2x-5)+2x[sinx(2x-5)]′
=2sin(2x-5)+2x(2x-5)′cos(2x-5)
=2sin(2x-5)+4xcos(2x-5).
(2)f′(x)=
1
x2+1
(
x2+1
)′
=
1
x2+1
×
1
2
(x2+1)-
1
2
(x2+1)
′=
x
x2+1

(3)y′=
2(x2+1)-2x•2x
(x2+1)2
=
2-2x2
(x2+1)2
點評:本題主要考查了初等函數(shù)導數(shù)公式以及復合函數(shù)的求導法則和導數(shù)的運算法則,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,AD是BC邊上的高,給出下列結(jié)論:①
AD
•(
AB
-
AC
)=0;②|
AB
+
AC
|≥2|
AD
|;③
AC
AD
|
AD
|
=|
AB
|sinB.其中結(jié)論正確的個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABC的三個內(nèi)角分別為A,B,C,cosA=
1
3
,cosB=
2
2
3
.CD是∠ACB的角平分線.
(1)求角C的大。
(2)求∠ADC的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,點A是單位圓與x軸正半軸的交點,點B(-
1
2
,
3
2
).
(Ⅰ)若∠AOB=α,求sin2α的值;
(Ⅱ)設點P為單位圓上的動點,點Q滿足
OQ
=
OA
+
OP
,∠AOP=2θ(
π
6
≤θ≤
π
2
),f(θ)=
OB
OQ
,求f(θ)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求曲線y=
2x
x2+1
在點(1,1)處的切線方程;
(2)運動曲線方程為S=
t-1
t2
+2t2,求t=3時的速度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了解甲、乙兩個班級某次考試的數(shù)學成績,從甲、乙兩個班級中分別隨機抽取5名學生的成績(單位:分)作樣本,如圖是樣本的莖葉圖:
(1)分別計算甲、乙兩個班級數(shù)學成績的樣本的平均數(shù);
(2)從甲、乙兩個班級數(shù)學成績的樣本中各隨機抽取1名同學的數(shù)學成績,求抽到的成績之差的絕對值不低于20的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一次高速列車的試運行中,調(diào)查了部分男女乘客在火車上身體有無不適的情況如表所示(單位:人).請你
根據(jù)所給數(shù)據(jù)填好上述2×2列聯(lián)表,并判定是否在高速列車的試運行中男性更容易出現(xiàn)不適反應?
有不適 無不適 合計
20
2 18
合計 30
附(參考公式:Χ2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
其中n=a+b+c+d)
P(k2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩個工廠,甲廠位于一直線河岸的岸邊A處,乙廠與甲廠在河的同側(cè),乙廠位于離河岸40千米的B處,乙廠到河岸的垂足D與A相距50千米,兩廠要在此岸邊AD之間合建一個供水站C,從供水站到甲廠和乙廠的水管費用分別為每千米3a元和5a元,若CD=x千米,設總的水管費用為y元,如圖所示,
(Ⅰ)寫出y關于x的函數(shù)表達式;
(Ⅱ)問供水站C建在岸邊何處才能使水管費用最。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于x的方程x2-λ|x-1|+1=0有4個相異實根,則實數(shù)λ的取值范圍是
 

查看答案和解析>>

同步練習冊答案