【題目】隨著夏季的到來,冰枕成為市面上的一種熱銷產品,某廠家為了調查冰枕在當?shù)卮髮W的銷售情況,作出調研,并將所得數(shù)據統(tǒng)計如下表所示:

表一:

溫度在30℃以下

溫度在30℃以上

總計

女生

10

30

40

男生

40

20

60

總計

50

50

100

隨后在該大學一個小賣部調查了冰枕的出售情況,并將某月的日銷售件數(shù)(x)與銷售天數(shù)(y)統(tǒng)計如下表所示:

表二:

2

4

6

8

10

(件)

3

6

7

10

12

1)請根據表二中的數(shù)據在下列網格紙中繪制散點圖;

2)請根據表二中提供的數(shù)據,用最小二乘法求出y關于x的線性回歸方程;

3)從(1)(2)中的數(shù)據及回歸方程我們可以得到,銷售件數(shù)隨著銷售天數(shù)的增長而增長,但無法判斷男、女生對冰枕的選擇是否與溫度有關,請結合表一中的數(shù)據,并自己設計方案來判段是否有99.9%的可能性說明購買冰枕的性別與溫度相關.

參考數(shù)據及公式:

P(K2k0)

0.100

0.050

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

【答案】1)散點圖見詳解;(2;(3)有99.9%的可能性說明購買冰枕的性別與溫度相關,具體見詳解.

【解析】

1)根據表格中的數(shù)據,直接繪制即可;

2)根據參考數(shù)據,利用公式,求得回歸直線的系數(shù),即可求得結果;

3)計算,結合參考數(shù)據表,即可進行判斷.

1)散點圖如下所示:

2)依題意,,

,

,

,

.

y關于x的線性回歸方程為.

3)采用獨立性檢驗的方法進行說明:

因為的觀測值

所以有99.9%的可能性說明購買冰枕的性別與溫度相關.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù)為.

1)若對任意恒成立,求實數(shù)的取值范圍;

2)若函數(shù)的極值為正數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖象向右平移個單位,在向上平移一個單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調區(qū)間;

2)當時,如果方程有兩個不等實根,求實數(shù)t的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列的前項和為,記,數(shù)列滿足,且數(shù)列的前項和為.

1)① 計算,的值;

猜想,滿足的關系式,并用數(shù)學歸納法加以證明;

2)若數(shù)列通項公式為,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)過點.

1)求橢圓的方程;

2)設過橢圓的右焦點,且傾斜角為的直線和橢圓交于兩點,對于橢圓上任一點,若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角坐標系中,圓的方程為,為圓上三個定點,某同學從點開始,用擲骰子的方法移動棋子.規(guī)定:①每擲一次骰子,把一枚棋子從一個定點沿圓弧移動到相鄰下一個定點;②棋子移動的方向由擲骰子決定,若擲出骰子的點數(shù)為偶數(shù),則按圖中箭頭方向移動;若擲出骰子的點數(shù)為奇數(shù),則按圖中箭頭相反的方向移動.設擲骰子次時,棋子移動到,處的概率分別為,,.例如:擲骰子一次時,棋子移動到,處的概率分別為,

1)分別擲骰子二次,三次時,求棋子分別移動到,,處的概率;

2)擲骰子次時,若以軸非負半軸為始邊,以射線,為終邊的角的余弦值記為隨機變量,求的分布列和數(shù)學期望;

3)記,,其中.證明:數(shù)列是等比數(shù)列,并求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的零點個數(shù);

2)設,證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xy中,曲線C的參數(shù)方程為為參數(shù)),在以為極點,軸的非負半軸為極軸的極坐標系中,直線的極坐標方程為。

1)求曲線C的極坐標方程;

(2)設直線與曲線C相交于A,B兩點,P為曲C上的一動點,求△PAB面積的最大值.

查看答案和解析>>

同步練習冊答案