已知二次函數(shù)f(x)的圖象經(jīng)過點(0,3),(1,0),(-2,3),g(x)=logaf(x),其中a>0且a≠1.
(1)求g(x)的解析式及其定義域;
(2)當(dāng)-2≤x≤0時,g(x)max=2,求a的值.
考點:對數(shù)的運算性質(zhì),二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)設(shè)f(x)=ax2+bx+c,a≠0,由二次函數(shù)f(x)的圖象經(jīng)過點(0,3),(1,0),(-2,3),得a=-1,b=-2,c=3,由此能求出g(x)的解析式及其定義域.
(2)由-2≤x≤0,得3≤f(x)≤4,由此利用已知條件能求出a的值.
解答: 解:(1)設(shè)f(x)=ax2+bx+c,a≠0,
∵二次函數(shù)f(x)的圖象經(jīng)過點(0,3),(1,0),(-2,3),
c=3
a+b+c=0
4a-2b+c=3
,解得a=-1,b=-2,c=3,
g(x)=loga(-x2-2x+3),-----(4分)
定義域{x|-3<x<1}.-----(6分)
(2)∵-2≤x≤0,∴3≤f(x)≤4-----(8分)
當(dāng)a>1時,loga4=2,a=2;-----(10分)
當(dāng)0<a<1時,loga3=2,a=
3
(舍)
綜上,a=2.-----(12分)
點評:本題考查函數(shù)的解析式和定義域的求法,考查實數(shù)值的求法,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-4x-12<0},B={x|b-3<x<b+7},M={x|-4≤x<5},全集U=R.
(1)求A∩M; 
(2)若B∪(∁uM)=R,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某校高二年級共有1200名學(xué)生,現(xiàn)從參加高二年級期中考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[40,50),[50,60)…[90,100]后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求分數(shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)估計這次期末考試的及格人數(shù)(60分及以上為及格).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
ax
x+1

(1)若函數(shù)f(x)有極值,求實數(shù)a的取值范圍;
(2)當(dāng)f(x)有兩個極值點(記為x1和x2)時,求證f(x1)+f(x2)≥
x+1
x
•[f(x)-x+1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項均為正數(shù)的數(shù)列{an}前n項和為Sn,首項為a1,且2,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2an,cn=
1
bnbn+1
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點M(2,0)做斜率為1的直線,交拋物線y2=4x相交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
(1)2x•2-x+(
2
-1)0-8
2
3
;
(2)已知2a=5b=m,且
1
a
+
1
b
=2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{an}為等差數(shù)列,則下列數(shù)列中:
(1){pan};  (2){nan}; (3){an2}; (4){an+an+1}.
(其中p,q為常數(shù))等差數(shù)列有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n和為Sn,且Sn=n2-2n+1(n∈N+),則數(shù)列{an}的通項公式為
 

查看答案和解析>>

同步練習(xí)冊答案