已知橢圓C的方程為
x 2
4
+
y2
3
=1,過(guò)C的右焦點(diǎn)F的直線(xiàn)與C相交于A、B兩點(diǎn),向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共線(xiàn),則直線(xiàn)AB的方程是(  )
分析:由F(1,0)設(shè)A(x1,y1),B(x2,y2),由
OA
-
OB
m
-
OF
共線(xiàn)可得A,B的坐標(biāo)滿(mǎn)足的關(guān)系,根據(jù)KAB=
y1-y2
x1-x2
可求直線(xiàn)AB的斜率,進(jìn)而可求直線(xiàn)AB的方程
解答:解:由題意可得,F(xiàn)(1,0)設(shè)A(x1,y1),B(x2,y2
OF
=(1,0)
,
m
-
OF
=(-2,-4)
AB
=
OA
OB
=(x1-x2,y1-y2
OA
-
OB
m
-
OF
共線(xiàn)
∴-2(y1-y2)+4(x1-x2)=0
KAB=
y1-y2
x1-x2
=2
故所求直線(xiàn)AB的方程為y=2(x-1)即2x-y-2=0
故選A
點(diǎn)評(píng):本題主要考查了利用向量的共線(xiàn)的坐標(biāo)表示,直線(xiàn)方程的求解,解題的關(guān)鍵是尋求A,B坐標(biāo)的關(guān)系
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0)
,橢圓C的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),斜率為k(k≠0)的直線(xiàn)l經(jīng)過(guò)點(diǎn)F2,交橢圓于A、B兩點(diǎn),且△ABF1的周長(zhǎng)為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)E為x軸上一點(diǎn),
AF2
F2B
(λ∈R),若
F1F2
⊥(
EA
BE
)
,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•崇明縣二模)已知橢圓C的方程為
x2
a2
+
y2
2
= 1
(a>0),其焦點(diǎn)在x軸上,點(diǎn)Q(
2
2
,
7
2
)
為橢圓上一點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)P(x0,y0)滿(mǎn)足
OP
=
OM
+2
ON
,其中M、N是橢圓C上的點(diǎn),直線(xiàn)OM與ON的斜率之積為-
1
2
,求證:
x
2
0
+2
y
2
0
為定值;
(3)在(2)的條件下探究:是否存在兩個(gè)定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•河北區(qū)一模)已知橢圓C的方程為 
x2
a2
+
y2
b2
=1 
(a>b>0),過(guò)其左焦點(diǎn)F1(-1,0)斜率為1的直線(xiàn)交橢圓于P、Q兩點(diǎn).
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共線(xiàn),求橢圓C的方程;
(Ⅱ)已知直線(xiàn)l:x+y-
1
2
=0,在l上求一點(diǎn)M,使以橢圓的焦點(diǎn)為焦點(diǎn)且過(guò)M點(diǎn)的雙曲線(xiàn)E的實(shí)軸最長(zhǎng),求點(diǎn)M的坐標(biāo)和此雙曲線(xiàn)E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓C的方程為
x 2
4
+
y2
3
=1,過(guò)C的右焦點(diǎn)F的直線(xiàn)與C相交于A、B兩點(diǎn),向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共線(xiàn),則直線(xiàn)AB的方程是( 。
A.2x-y-2=0B.2x+y-2=0C.2x-y+2=0D.2x+y+2=0

查看答案和解析>>

同步練習(xí)冊(cè)答案