函數(shù)f(x)=sinx-x,x∈[-
π
2
π
2
]值域是( 。
A、[1-
π
2
,0]
B、[-1,0]
C、[1-
π
2
,
π
2
-1]
D、[0,
π
2
-1]
考點(diǎn):函數(shù)的值域
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求f′(x),判斷f′(x)在[-
π
2
π
2
]
上的符號,從而判斷出函數(shù)f(x)在該區(qū)間上的單調(diào)性,根據(jù)單調(diào)性即可求出f(x)的值域.
解答: 解:f′(x)=cosx-1,∴x∈[-
π
2
,
π
2
]
時,f′(x)≤0;
∴函數(shù)f(x)在[-
π
2
,
π
2
]
上單調(diào)遞減;
∴f(x)的值域?yàn)?span id="jx5pn9n" class="MathJye">[f(
π
2
),f(-
π
2
)]=[1-
π
2
,-1+
π
2
].
故選C.
點(diǎn)評:考查函數(shù)導(dǎo)數(shù)符號和函數(shù)單調(diào)性的關(guān)系,以及根據(jù)函數(shù)單調(diào)性求函數(shù)的值域.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a=45,b=80,則a,b的等比中項為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=a2-sinx,則f′(x)=( 。
A、-sinx
B、-cosx
C、2a+sinx
D、2a-sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)O是邊長為1的等邊△ABC的外心,則(
OA
+
OB
)•(
OA
+
OC
)等于(  )
A、
1
9
B、-
1
9
C、-
3
6
D、-
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P是直角三角形ABC的斜邊BC上的一點(diǎn),且|
AP
|=2,∠BAP=
π
6
,則|
AB
|+
3
|
AC
|的最小值是( 。
A、4
3
B、4
C、3+3
3
D、3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0且a≠1,f(x)=x2-ax,當(dāng)x∈(-1,1)時均有f(x)<
1
2
,則實(shí)數(shù)a的取值范圍是( 。
A、0<a≤
1
2
或a≥2
B、
1
4
≤a<1或1<a≤4
C、
1
2
≤a<1或1<a≤2
D、0<a≤
1
4
或a≥4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一直線的傾斜角為α,且滿足45°≤α≤150°,則直線的斜率的取值范圍為( 。
A、[-
3
3
,1]
B、(-∞,-
3
3
]∪[1,+∞)
C、(-∞,-
3
]∪[1,+∞)
D、[-
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=f(x)滿足f(2+x)=f(2-x)且函數(shù)圖象截x軸所得的線段長為8,則函數(shù)y=f(x)的零點(diǎn)為( 。
A、2,6B、2,-6
C、-2,6D、-2,-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某臺小型晚會由6個節(jié)目組成,演出順序有如下要求:節(jié)目甲必須排在第四位、節(jié)目乙不能排在第一位,節(jié)目丙不能排在最后一位,該臺晚會節(jié)目演出順序的編排方案共有( 。
A、36種B、42種
C、48種D、78種

查看答案和解析>>

同步練習(xí)冊答案