若?x∈R,使|x-a|+|x-1|≤4成立,則實(shí)數(shù)a的取值范圍是   
【答案】分析:利用絕對(duì)值的幾何意義,轉(zhuǎn)化不等式為|a-1|≤4,解之即可.
解答:解:在數(shù)軸上,|x-a|表示橫坐標(biāo)為x的點(diǎn)P到橫坐標(biāo)為a的點(diǎn)A距離,|x-1|就表示點(diǎn)P到橫坐標(biāo)為1的點(diǎn)B的距離,
∵(|PA|+|PB|)min=|a-1|,
∴要使得不等式|x-a|+|x-1|≤3成立,只要最小值|a-1|≤4就可以了,
即|a-1|≤4,
∴-3≤a≤5.
故實(shí)數(shù)a的取值范圍是-3≤a≤5.
故答案為:[-3,5].
點(diǎn)評(píng):本題考查絕對(duì)值不等式的解法,考查絕對(duì)值的幾何意義,得到|a-1|≤4是關(guān)鍵,也是難點(diǎn),考查分析問題、轉(zhuǎn)化解決問題的能力,屬于中檔題.利用數(shù)軸幫助理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕頭二模)若?x∈R,使|x-a|+|x-1|≤4成立,則實(shí)數(shù)a的取值范圍是
[-3,5]
[-3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長,則下列結(jié)論中正確的是(  )
①對(duì)一切x∈(-∞,1)都有f(x)>0;
②存在x∈R+,使xax,bx,cx不能構(gòu)成一個(gè)三角形的三條邊長;
③若△ABC為鈍角三角形,則存在x∈(1,2),使f(x)=0.
A、①②B、①③C、②③D、①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若?x∈R,使|x-a|+|x-1|≤4成立,則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案