【題目】在平面直角坐標(biāo)系中,已知、分別為橢圓的左、右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長軸,動(dòng)直線垂直于直線于點(diǎn),線段的中垂線交于點(diǎn).記點(diǎn)的軌跡為曲線.
(1)求曲線的方程,并說明是什么曲線;
(2)若直線與曲線交于兩點(diǎn)、,則在圓上是否存在兩點(diǎn)、,使得,?若存在,請(qǐng)求出的取值范圍;若不存在,請(qǐng)說明理由.
【答案】(1);是以為焦點(diǎn),為準(zhǔn)線的拋物線(2)存在;
【解析】
(1)根據(jù)題意可得,再根據(jù)拋物線的定義即可求出曲線的方程.
(2)將直線與曲線:聯(lián)立,由直線與曲線交于點(diǎn),,,利用韋達(dá)定理可得,從而求出的中垂線方程,由,,可得的中垂線與圓交于兩點(diǎn)、,利用點(diǎn)到直線的距離公式使圓心到直線的距離小于半徑即可求解.
(1)由題意,得,則動(dòng)點(diǎn)的軌跡是以為焦點(diǎn),
為準(zhǔn)線的拋物線,所以點(diǎn)的軌跡的方程為.
(2)由得.
由直線與曲線交于點(diǎn),,
得,解得.
由韋達(dá)定理,得.
設(shè)的中點(diǎn)為,
則,,
即,
所以的中垂線方程為,即,
由,,得的中垂線與圓交于兩點(diǎn)、,
所以,解得.
由①和②,得.
綜上,當(dāng)時(shí),圓上存在兩點(diǎn)、,使得,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位戰(zhàn)士參加射擊比賽訓(xùn)練.從若干次預(yù)賽成績中隨機(jī)抽取8次,記錄如下:
甲82 81 79 78 95 88 93 84
乙92 95 80 75 83 80 90 85
(1)用莖葉圖表示這兩組數(shù)據(jù),并分別求兩組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)要從中選派一人參加射擊比賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位戰(zhàn)士參加合適?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線過原點(diǎn)且傾斜角為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.在平面直角坐標(biāo)系中,曲線與曲線關(guān)于直線對(duì)稱.
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)若直線過原點(diǎn)且傾斜角為,設(shè)直線與曲線相交于,兩點(diǎn),直線與曲線相交于,兩點(diǎn),當(dāng)變化時(shí),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,圓:,動(dòng)圓與圓和圓均內(nèi)切.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)過點(diǎn)的直線與軌跡交于,兩點(diǎn),過點(diǎn)且垂直于的直線交軌跡于兩點(diǎn),兩點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的上頂點(diǎn)為A,右焦點(diǎn)為F,O是坐標(biāo)原點(diǎn),是等腰直角三角形,且周長為.
(1)求橢圓的方程;
(2)若直線l與AF垂直,且交橢圓于B,C兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,,,.
(1)求證:平面平面;
(2)若,直線與平面所成角為45°,為的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是全球最大的口罩生產(chǎn)國,在2020年3月份,我國每日口罩產(chǎn)量超一億只,已基本滿足國內(nèi)人民的需求,但隨著疫情在全球范圍擴(kuò)散,境外口罩需求量激增,世界衛(wèi)生組織公開呼吁擴(kuò)大口罩產(chǎn)能常見的口罩有和(分別阻擋不少于90.0%和95.0%的0.055到0.095微米的氯化鈉顆粒)兩種,某口罩廠兩條獨(dú)立的生產(chǎn)線分別生產(chǎn)和兩種口罩,為保證質(zhì)量對(duì)其進(jìn)行多項(xiàng)檢測(cè)并評(píng)分(滿分100分),規(guī)定總分大于或等于85分為合格,小于85分為次品,現(xiàn)從流水線上隨機(jī)抽取這兩種口罩各100個(gè)進(jìn)行檢測(cè)并評(píng)分,結(jié)果如下:
總分 | |||||
6 | 14 | 42 | 31 | 7 | |
4 | 6 | 47 | 35 | 8 |
(1)試分別估計(jì)兩種口罩的合格率;
(2)假設(shè)生產(chǎn)一個(gè)口罩,若質(zhì)量合格,則盈利3元,若為次品則虧損1元;生產(chǎn)一個(gè)口罩,若質(zhì)量合格,則盈利8元,若為次品則虧損2元,在(1)的前提下,
①設(shè)為生產(chǎn)一個(gè)口罩和生產(chǎn)一個(gè)口罩所得利潤的和,求隨機(jī)變量的分布列和數(shù)學(xué)期望;
②求生產(chǎn)4個(gè)口罩所得的利潤不少于8元的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB//DC,AB=2CD,∠BCD=90°.
(1)求證:AD⊥PB;
(2)求點(diǎn)C到平面PAB的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com