如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點,△AEC面積的最小值是3.
(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.
(1)詳見解析,(2).
【解析】
試題分析:(1)證明線線垂直,一般利用線面垂直性質與判定定理進行轉化. 因為四邊形ABCD是菱形,所以AC⊥BD.又因為PD⊥平面ABCD,所以PD⊥AC.因而AC⊥平面PDB,從而AC⊥DE.(2)設AC與BD相交于點F.連EF.由(1),知AC⊥平面PDB,所以AC⊥EF.所以S△ACE=AC·EF,因此△ACE面積最小時,EF最小,則EF⊥PB.由△PDB∽△FEB,解得PD=,因為PD⊥平面ABCD,所以VP—ABCD=S□ABCD·PD=×24×=.
(1)證明:連接BD,設AC與BD相交于點F.
因為四邊形ABCD是菱形,所以AC⊥BD.
又因為PD⊥平面ABCD,AC平面ABCD,所以PD⊥AC.
而AC∩BD=F,所以AC⊥平面PDB.
E為PB上任意一點,DE平面PBD,所以AC⊥DE.
(2)連EF.由(1),知AC⊥平面PDB,EF平面PBD,所以AC⊥EF. S△ACE=AC·EF,在△ACE面積最小時,EF最小,則EF⊥PB.
S△ACE=3,×6×EF=3,解得EF=1.
由△PDB∽△FEB,得.由于EF=1,F(xiàn)B=4,,
所以PB=4PD,即.解得PD=
VP—ABCD=S□ABCD·PD=×24×=.
考點:線面垂直性質與判定定理,四棱錐體積
科目:高中數(shù)學 來源:2013-2014學年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測二文科數(shù)學試卷(解析版) 題型:填空題
已知是虛數(shù)單位,,若復數(shù)的實部是,則 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測三數(shù)學試卷(解析版) 題型:填空題
拋物線的焦點到雙曲線的漸近線的距離是 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省高三下學期4月周練理科數(shù)學試卷(解析版) 題型:解答題
已知矩陣,點,.求線段在矩陣對應的變換作用下得到線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省高三下學期4月周練文科數(shù)學試卷(解析版) 題型:填空題
若直線的傾斜角為鈍角,則實數(shù)的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省徐州市高三第三次質量檢測文科數(shù)學試卷(解析版) 題型:填空題
已知點到雙曲線的一條漸近線的距離為,則雙曲線的離心率為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com