已知△ABC,點O滿足
OC
=2
BO
,過點O的直線與線段AB及AC的延長線分別相交于點E,F(xiàn),設
AE
AB
AF
AC
,則8λ+μ的最小值是
 
考點:平面向量數(shù)量積的運算
專題:計算題,綜合題,平面向量及應用
分析:由三角形法則可得
AO
=
2
3
AB
+
1
3
AC
,由E、O、F三點共線,得
AO
=m
AE
+(1-m)
AF
=mλ
AB
+(1-m)μ
AC
,由
mλ=
2
3
(1-m)μ=
1
3
消掉m得,
2
+
1
=1
,從而8λ+μ=(8λ+μ)•(
2
+
1
)
,利用基本不等式可求答案.
解答: 解:∵
OC
=2
BO
,
AO
=
AB
+
BO
=
AB
+
1
3
BC

=
AB
+
1
3
(
AC
-
AB
)

=
2
3
AB
+
1
3
AC

由E、O、F三點共線,得
AO
=m
AE
+(1-m)
AF
=mλ
AB
+(1-m)μ
AC

mλ=
2
3
(1-m)μ=
1
3
,消掉m得,
2
+
1
=1
①,(
2
3
<λ<1
,μ>1),
∴8λ+μ=(8λ+μ)•(
2
+
1
)
=
17
3
+
+
)≥
17
3
+2
=
25
3

當且僅當
=
②時取等號,由①②可解得μ=
5
3
λ=
5
6
,
故答案為:
25
3
點評:本題考查向量加法的三角形法則、三點共線的條件及基本不等式求最值,考查學生綜合運用知識解決問題的能力,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,a1=2,且an+1=an+2n
(Ⅰ)求數(shù)列{an}的通項an
(Ⅱ)數(shù)列{an}中是否存在這樣的兩項ap,aq(p<q),使得ap+aq=2014?若存在,求符合條件的所有的p,q;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若非零向量
a
、
b
滿足2|
a
|=|
b
|,且
a
•(
a
-
b
)=0,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結果是=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>1,0<b<1,則logab+logba的取值范圍是(用區(qū)間表示)
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若直線y=kx與圓(x-2)2+y2=1的兩個交點關于直線2x+y+b=0對稱,則k+b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件,為了解它們的產(chǎn)品質量是否存在顯著差異,用分層抽樣的方法抽取了一個容量為n的樣本進行調查,其中從丙車間的產(chǎn)品中抽取了3件,則n=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x、y滿足不等式組
2x-y≤0
x+y-3≥0
x+2y≤6
,則z=x-y的最小值為( 。
A、-1
B、-
6
5
C、-3
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z=
3
i+1
1+i
(其中i是虛數(shù)單位),則|z|=( 。
A、2
2
B、
2
C、1
D、1

查看答案和解析>>

同步練習冊答案