【題目】已知函數(shù).

(1)設(shè) ,若函數(shù)恰有一個零點,求實數(shù)的取值范圍;

(2)設(shè) ,對任意,有成立,求實數(shù)的取值范圍.

【答案】(1).(2).

【解析】分析:(1)先求出,再求出,再利用導數(shù)分析函數(shù)的單調(diào)性和零點,得到a的取值范圍.(2)先把命題轉(zhuǎn)化為,再利用導數(shù)求函數(shù)的最大值和最小值代入可得實數(shù)的取值范圍.

詳解:(1)函數(shù)的定義域為,∴.

①當時,,所以上單調(diào)遞增,

,則

(或:因為時,所以 .)因為,所以,此時函數(shù)有一個零點.

②當時,令,解得.時,,

所以上單調(diào)遞減;

時,,所以上單調(diào)遞增.

要使函數(shù)有一個零點,則,即,.

綜上所述,若函數(shù)恰有一個零點,則.

(2)因為對任意,有成立,

因為 ,所以.

所以,所以.

時,,當時,,

所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增,,

,所以.

設(shè) ,

,

所以上單調(diào)遞增,故,

所以.從而.

所以,

設(shè),則.時,,

所以上單調(diào)遞增.

所以,即,解得.因為,

所以的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某代賣店代售的某種快餐,深受廣大消費者喜愛,該種快餐每份進價為8元,并以每份12元的價格銷售.如果當天19:00之前賣不完,剩余的該種快餐每份以5元的價格作特價處理,且全部售完.

(1)若這個代賣店每天定制15份該種快餐,求該種類型快餐當天的利潤y(單位:元)關(guān)于當天需求量x(單位:份,)的函數(shù)解析式;

(2)該代賣點記錄了一個月30天的每天19:00之前的銷售數(shù)量該種快餐日需求量,統(tǒng)計數(shù)據(jù)如下:

日需求量

12

13

14

15

16

17

天數(shù)

4

5

6

8

4

3

以30天記錄的日需求量的頻率作為日需求量發(fā)生的概率,假設(shè)這個代賣店在這一個月內(nèi)每天都定制15份該種快餐.

(i)求該種快餐當天的利潤不少于52元的概率.

(ii)求這一個月該種快餐的日利潤的平均數(shù)(精確到0.1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是亞太區(qū)域國家與地區(qū)加強多邊經(jīng)濟聯(lián)系、交流與合作的重要組織,其宗旨和目標是“相互依存、共同利益,堅持開放性多邊貿(mào)易體制和減少區(qū)域間貿(mào)易壁壘.”2017年會議于11月10日至11日在越南峴港舉行.某研究機構(gòu)為了了解各年齡層對會議的關(guān)注程度,隨機選取了100名年齡在內(nèi)的市民進行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分組區(qū)間分別為,,,).

(1)求選取的市民年齡在內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人參與會議的宣傳活動,求參與宣傳活動的市民中至少有一人的年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),),.

(1)若函數(shù)上的最大值為1,求的值;

(2)若存在使得關(guān)于的不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省2016年高中數(shù)學學業(yè)水平測試的原始成績采用百分制,發(fā)布成績使用等級制.各等制劃分標準為:85分及以上,記為等;分數(shù)在內(nèi),記為等;分數(shù)在內(nèi),記為等;60分以下,記為等.同時認定為合格, 為不合格.已知甲,乙兩所學校學生的原始成績均分布在內(nèi),為了比較兩校學生的成績,分別抽取50名學生的原始成績作為樣本進行統(tǒng)計,按照的分組作出甲校的樣本頻率分布直方圖如圖1所示,乙校的樣本中等級為的所有數(shù)據(jù)莖葉圖如圖2所示.

(Ⅰ)求圖1中的值,并根據(jù)樣本數(shù)據(jù)比較甲乙兩校的合格率;

(Ⅱ)在選取的樣本中,從甲,乙兩校等級的學生中隨機抽取3名學生進行調(diào)研,用表示所抽取的3名學生中甲校的學生人數(shù),求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中, , 的中點, 的中點,且為正三角形.

(1)求證: 平面;

(2)若三棱錐的體積為1,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓的極坐標方程為.

(1)求直線的普通方程與圓的直角坐標方程;

(2)設(shè)動點在圓上,動線段的中點的軌跡為與直線交點為,且直角坐標系中,點的橫坐標大于點的橫坐標,求點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩家銷售公司擬各招聘一名產(chǎn)品推銷員,日工資方案如下: 甲公司規(guī)定底薪80元,每銷售一件產(chǎn)品提成1元; 乙公司規(guī)定底薪120元,日銷售量不超過45件沒有提成,超過45件的部分每件提成8元.

(I)請將兩家公司各一名推銷員的日工資(單位: 元) 分別表示為日銷售件數(shù)的函數(shù)關(guān)系式;

(II)從兩家公司各隨機選取一名推銷員,對他們過去100天的銷售情況進行統(tǒng)計,得到如下條形圖。若記甲公司該推銷員的日工資為,乙公司該推銷員的日工資為(單位: 元),將該頻率視為概率,請回答下面問題:

某大學畢業(yè)生擬到兩家公司中的一家應(yīng)聘推銷員工作,如果僅從日均收入的角度考慮,請你利用所學的統(tǒng)計學知識為他作出選擇,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知圓的圓心為,半徑為.以極點為原點,極軸方向為軸正半軸方向,利用相同單位長度建立平面直角坐標系,直線的參數(shù)方程為為參數(shù),).

(Ⅰ)寫出圓的極坐標方程和直線的普通方程;

(Ⅱ)若直線與圓交于、兩點,求的最小值.

查看答案和解析>>

同步練習冊答案