分析 根據(jù)正切函數(shù)的圖象及性質(zhì)依次判斷即可.
解答 解:函數(shù)f(x)=tan(2x-$\frac{π}{4}$),
對于①:由題意,2x-$\frac{π}{4}$$≠\frac{π}{2}+kπ$,可得:x≠$\frac{1}{2}kπ+\frac{3π}{8}$.k∈Z.∴①對.
對于②:f(-x)=tan(-2x-$\frac{π}{4}$)=-tan(2x+$\frac{π}{4}$),f(-x)≠-f(x).∴函數(shù)f(x)不是奇函數(shù),②不對.
對于③:令2x-$\frac{π}{4}$=$\frac{1}{2}$kπ,可得:x=$\frac{1}{4}kπ+\frac{π}{8}$,k為整數(shù).當(dāng)k=0時(shí),可得圖象關(guān)于點(diǎn)($\frac{π}{8}$,0)對稱;∴③對.
對于④:令kπ$-\frac{π}{2}<2x-\frac{π}{4}<\frac{π}{2}$+kπ,可得:$\frac{1}{2}kπ-\frac{π}{8}<x<\frac{1}{2}kπ+\frac{3π}{8}$,∴④不對.
故答案為:①③.
點(diǎn)評 本題考查了正切函數(shù)的定義域,奇偶性,對稱性,單調(diào)性的運(yùn)用.屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 科學(xué)家利用魚的沉浮原理制造潛艇 | |
B. | 猜想數(shù)列$\frac{1}{1×2}$,$\frac{1}{2×3}$,$\frac{1}{3×4}$,…的通項(xiàng)公式為an=$\frac{1}{n(n+1)}$(n∈N+) | |
C. | 半徑為r的圓的面積S=πr2,則單位圓的面積S=π | |
D. | 由平面直角坐標(biāo)系中圓的方程為(x-a)2+(y-b)2=r2,推測空間直角坐標(biāo)系中球的方程為(x-a)2+(y-b)2+(z-c)2=r2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | 3 | 4 | 5 | 6 |
y | 2.5 | t | 4 | 4.5 |
A. | 2.6 | B. | 2.8 | C. | 2.9 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=sin(\frac{x}{2}+\frac{π}{3})$ | B. | $y=sin(2x-\frac{π}{6})$ | C. | $y=cos(2x-\frac{π}{6})$ | D. | $y=tan(x+\frac{π}{6})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com