已知橢圓C:的離心率等于,點(diǎn)P在橢圓上。
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),是否存在定直線,使得的交點(diǎn)總在直線上?若存在,求出一個(gè)滿足條件的值;若不存在,說明理由.

(1);(2)存在,.

解析試題分析:(1)由,點(diǎn)代入橢圓方程,二者聯(lián)立可以解出;(2)以的存在性分兩種情況:①不存在,直線:,易證符合題意;②存在時(shí),設(shè)直線:,用直線方程和橢圓方程聯(lián)立方程組,消參得一元二次方程,利用韋達(dá)定理得,,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/57/8/12njh4.png" style="vertical-align:middle;" />共線,有,由,得出,由于成立,所以點(diǎn)在直線上,綜上:存在定直線:,使得的交點(diǎn)總在直線上,的值是.
試題解析:(1)由,               2分
又點(diǎn)在橢圓上,,              4分
所以橢圓方程是:;                       5分
(2)當(dāng)垂直軸時(shí),,則的方程是:,
的方程是:,交點(diǎn)的坐標(biāo)是:,猜測:存在常數(shù),
即直線的方程是:使得的交點(diǎn)總在直線上,         6分
證明:設(shè)的方程是,點(diǎn),
的方程代入橢圓的方程得到:
即:,                  7分
從而:,                 8分
因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/f8/1/1qmt43.png" style="vertical-align:middle;" />,共線
所以:,,                  9分

要證明共線,即要證明,            10分
即證明:,
即:,
即:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左焦點(diǎn)為,右焦點(diǎn)為

(Ⅰ)設(shè)直線過點(diǎn)且垂直于橢圓的長軸,動(dòng)直線垂直于點(diǎn)P,線段的垂直平分線交于點(diǎn)M,求點(diǎn)M的軌跡的方程;
(Ⅱ)設(shè)為坐標(biāo)原點(diǎn),取曲線上不同于的點(diǎn),以為直徑作圓與相交另外一點(diǎn),求該圓的面積最小時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:=1(a>b>0)的焦距為4,且與橢圓x2=1有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同的兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知橢圓的上、下頂點(diǎn)分別為,點(diǎn)在橢圓上,且異于點(diǎn),直線與直線分別交于點(diǎn),

(Ⅰ)設(shè)直線的斜率分別為,求證:為定值;
(Ⅱ)求線段的長的最小值;
(Ⅲ)當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),以為直徑的圓是否經(jīng)過某定點(diǎn)?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的離心率等于,點(diǎn)P在橢圓上。
(1)求橢圓的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為,過點(diǎn)的動(dòng)直線與橢圓相交于兩點(diǎn),是否存在定直線,使得的交點(diǎn)總在直線上?若存在,求出一個(gè)滿足條件的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C1的極坐標(biāo)方程為ρcos(θ-)=-1,曲線C2的極坐標(biāo)方程為ρ=2cos(θ-).以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系.
(Ⅰ)求曲線C2的直角坐標(biāo)方程;
(Ⅱ)求曲線C2上的動(dòng)點(diǎn)M到曲線C1的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

極坐標(biāo)系中橢圓C的方程為以極點(diǎn)為原點(diǎn),極軸為軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長度.
(Ⅰ)求該橢圓的直角標(biāo)方程;若橢圓上任一點(diǎn)坐標(biāo)為,求的取值范圍;
(Ⅱ)若橢圓的兩條弦交于點(diǎn),且直線的傾斜角互補(bǔ),
求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

四邊形ABCD的四個(gè)頂點(diǎn)都在拋物線上,A,C關(guān)于軸對稱,BD平行于拋物線在點(diǎn)C處的切線。
(Ⅰ)證明:AC平分
(Ⅱ)若點(diǎn)A坐標(biāo)為,四邊形ABCD的面積為4,求直線BD的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,設(shè)拋物線的焦點(diǎn)為,且其準(zhǔn)線與軸交于,以為焦點(diǎn),離心率的橢圓與拋物線軸上方的一個(gè)交點(diǎn)為P.

(1)當(dāng)時(shí),求橢圓的方程;
(2)是否存在實(shí)數(shù),使得的三條邊的邊長是連續(xù)的自然數(shù)?若存在,求出這樣的實(shí)數(shù);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案