已知f(x)=
13
x3-2ax2+3a2x+2
的定義域是[0,4].
(1)若f(x)的極值點(diǎn)是x=3,求a的值;
(2)若f(x)是單峰函數(shù),求a的取值范圍.
分析:(1)由f(x)=
1
3
x3-2ax2+3a2x+2
,知f′(x)=x2-4ax+3a2,由f(x)的極值點(diǎn)是x=3,知f′(3)=9-12a+3a2=0,由此能求出a.
(2)f′(x)=x2-4ax+3a2=(x-a)(x-3a),結(jié)合f(x)是單峰函數(shù),分類(lèi)討論,能夠求出a的取值范圍.
解答:解:(1)∵f(x)=
1
3
x3-2ax2+3a2x+2
,
∴f′(x)=x2-4ax+3a2
∵f(x)的極值點(diǎn)是x=3,
∴f′(3)=9-12a+3a2=0,
解得a=1或a=3.
(2)∵f′(x)=x2-4ax+3a2=(x-a)(x-3a),
①當(dāng)a=0時(shí),f′(x)=x2≥0在[0,4]內(nèi)恒成立,
故f(x)不是單峰函數(shù),
故a=0不成立;
②當(dāng)a<0時(shí),由f′(x)>0,得f(x)的增區(qū)間為(-∞,3a),(a,+∞),
由f′(x)<0,得f(x)的減區(qū)間為(3a,a)
∵f(x)在[0,4]內(nèi)是單峰函數(shù),
0<3a<4
3a≥4
,或
0<a<4
3a≤0
,
無(wú)解.
③當(dāng)a>0時(shí),由f′(x)>0,得f(x)的增區(qū)間為(-∞,a),(3a,+∞),
由f′(x)<0,得f(x)的減區(qū)間為(a,3a),
∵f(x)在[0,4]內(nèi)是單峰函數(shù),
0<a<4
3a≥4
0<3a<4
a≤0

解得α∈[
4
3
,4)

綜上所述,a的取值范圍是[
4
3
,4
).
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)在某點(diǎn)取得極值的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意分類(lèi)討論思想的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=|x+3|+|x-7|的最小值為m,則(
x
-
1
3x
)m
展開(kāi)式中的常數(shù)項(xiàng)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x2+13x+p
是奇函數(shù).
(1)求實(shí)數(shù)p的值;
(2)判斷函數(shù)f(x)在(-∞,-1)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x
,等比數(shù)列{an}的前n項(xiàng)和為Sn=f(n)-c,則an的最小值為
-
2
3
-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
13x-1
+a
為奇函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
3x+
3
,分別求f(0)+f(1),f(-1)+f(2),f(-2)+f(3),然后歸納猜想一般性結(jié)論f(-x)+f(1+x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案