【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;
(Ⅱ)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(I);(II)
【解析】
試題分析:(I)求出時(shí),,根據(jù)直線方程的點(diǎn)斜式可得切線方程;(II)當(dāng)時(shí),若不等式恒成立等價(jià)于,通過(guò)討論的范圍,得到其在上的單調(diào)性,分別求出求出最小值,得到的范圍,最后取并集即得實(shí)數(shù)的取值范圍.
試題解析:(I)當(dāng)時(shí),,
即曲線在處的切線的斜率為,又,
所以所求切線方程為.
(II)當(dāng)時(shí),若不等式恒成立
易知
若,則恒成立,在R上單調(diào)遞增;
又,所以當(dāng)時(shí),,符合題意.
若,由,解得,則當(dāng)時(shí),,單調(diào)遞減;
當(dāng)時(shí),,單調(diào)遞增.
所以時(shí),函數(shù)取得最小值.
則當(dāng),即時(shí),則當(dāng)時(shí),,符合題意.
當(dāng),即時(shí),則當(dāng)時(shí),單調(diào)遞增,,不符合題意.
綜上,實(shí)數(shù)的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知: ; :關(guān)于的方程的兩根之差的絕對(duì)值大于3.如果為真命題,為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)開(kāi)發(fā)一種新產(chǎn)品,現(xiàn)準(zhǔn)備投入適當(dāng)?shù)膹V告費(fèi),對(duì)產(chǎn)品進(jìn)行促銷,在一年內(nèi),預(yù)計(jì)年銷量Q(萬(wàn)件)與廣告費(fèi)x(萬(wàn)件)之間的函數(shù)關(guān)系為,已知生產(chǎn)此產(chǎn)品的年固定投入為3萬(wàn)元,每年產(chǎn)1萬(wàn)件此產(chǎn)品仍需要投入32萬(wàn)元,若年銷售額為,而當(dāng)年產(chǎn)銷量相等。
(1)試將年利潤(rùn)P(萬(wàn)件)表示為年廣告費(fèi)x(萬(wàn)元)的函數(shù);
(2)當(dāng)年廣告費(fèi)投入多少萬(wàn)元時(shí),企業(yè)年利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問(wèn)題較為突出.某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,…,分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)若該市有110萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),請(qǐng)說(shuō)明理由;
(3)估計(jì)居民月均用水量的中位數(shù)(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值點(diǎn);
(2)若函數(shù)在區(qū)間[2,6]內(nèi)有極值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;
(Ⅱ)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤(rùn)12萬(wàn)元,該公司通過(guò)設(shè)備升級(jí),生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤(rùn)提高了;若將少用的噸原材料全部用于生產(chǎn)公司新開(kāi)發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤(rùn)為萬(wàn)元,其中a>0.
(1)若設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn)不低于原來(lái)生產(chǎn)該批A產(chǎn)品的利潤(rùn),求的取值范圍;
(2)若生產(chǎn)這批B產(chǎn)品的利潤(rùn)始終不高于設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將圓的一組等分點(diǎn)分別涂上紅色或藍(lán)色,從任意一點(diǎn)開(kāi)始,按逆時(shí)針?lè)较蛞来斡涗?/span>()個(gè)點(diǎn)的顏色,稱為該圓的一個(gè)“階色序”,當(dāng)且僅當(dāng)兩個(gè)階色序?qū)?yīng)位置上的顏色至少有一個(gè)不相同時(shí),稱為不同的階色序.若某國(guó)的任意兩個(gè)“階色序”均不相同,則稱該圓為“階魅力圓”.“3階魅力圓”中最多可有的等分點(diǎn)個(gè)數(shù)為( )
A.4 B.6 C.8 D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙兩人下棋比賽,規(guī)定誰(shuí)比對(duì)方先多勝兩局誰(shuí)就獲勝,比賽立即結(jié)束;若比賽進(jìn)行完6局還沒(méi)有分出勝負(fù)則判第一局獲勝者為最終獲勝且結(jié)束比賽.比賽過(guò)程中,每局比賽甲獲勝的概率為,乙獲勝的概率為,每局比賽相互獨(dú)立.求:(1)比賽兩局就結(jié)束且甲獲勝的概率;(2)恰好比賽四局結(jié)束的概率;(3)在整個(gè)比賽過(guò)程中,甲獲勝的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com