如圖,直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D為A1C1的中點,E為B1C的中點.
(1)求直線BE與A1C所成的角;
(2)在線段AA1中上是否存在點F,使CF⊥平面B1DF,若存在,求出||;若不存在,說明理由.

【答案】分析:(1)先以B為原點,建立如圖所示的空間直角坐標系,再求得相關(guān)點的坐標,再求的相關(guān)向量的坐標,最后用向量夾角公式求解.(2)假設(shè)存在點F,要使CF⊥平面B1DF,只要證明即可,用向量法只要數(shù)量積為零即可.
解答:解:(1)以B為原點,建立如圖所示的空間直角坐標系.
∵AC=2a,∠ABC=90°,

∴B(0,0,0),C(0,,0),A(,0,0),A1,0,3a),C1(0,,3a),B1(0,0,3a).
,,3a),E(0,,,
,,3a),=(0,
,=,∴,
.故BE與A1C所成的角為

(2)假設(shè)存在點F,要使CF⊥平面B1DF,只要
不妨設(shè)AF=b,則F(,0,b),,,b),,0,b-3a),=,,0),
恒成立.
或b=2a,
故當或2a時,
CF⊥平面B1DF.
點評:本題主要考查用向量法研究線線垂直和異面直線所成的角,選用向量法,避開了作輔助線,優(yōu)越性很強,作為理科要注意應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=1,CB=
2
,側(cè)棱AA1=1,側(cè)面AA1B1B的兩條對角線交于點D,B1C1的中點為M,求證:CD⊥平面BDM.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D為A1C1的中點,E為B1C的中點.
(1)求直線BE與A1C所成的角;
(2)在線段AA1中上是否存在點F,使CF⊥平面B1DF,若存在,求出|
AF
|;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖在直三棱柱ABC-A1B1C1中∠ACB=90°,AA1=2,AC=BC=1,則異面直線A1B與AC所成角的余弦值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1=2,M,N分別為AC,B1C1的中點.
(Ⅰ)求線段MN的長;
(Ⅱ)求證:MN∥平面ABB1A1;
(Ⅲ)線段CC1上是否存在點Q,使A1B⊥平面MNQ?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,AA1=2a,D棱B1B的中點.
(Ⅰ)證明:A1C1∥平面ACD;
(Ⅱ)求異面直線AC與A1D所成角的大小;
(Ⅲ)證明:直線A1D⊥平面ADC.

查看答案和解析>>

同步練習冊答案