已知是一個等差數(shù)列,且,
(Ⅰ)求的通項;  (Ⅱ)求前n項和Sn的最大值.
(1)(2)時,取到最大值

試題分析:(Ⅰ)設的公差為,由已知條件,,解出,.
所以.
(Ⅱ).所以時,取到最大值.
點評:考查了等差數(shù)列的通項公式和前n項和的最值的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

設等差數(shù)列的前n項和為,若,則       。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列的前項和為,且,,可歸納猜想出的表達式為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

Sn是等差數(shù)列{an}的前n項和,若,則=(     ).
A.1B.-1C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
等差數(shù)列中,前項和為,且
(Ⅰ)求通項公式;
(Ⅱ)設,求數(shù)列項的和

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設數(shù)列是有窮等差數(shù)列,給出下面數(shù)表:
              ……             第1行
      ……           第2行
  …       …     …
…        …
…                       第n行
上表共有行,其中第1行的個數(shù)為,從第二行起,每行中的每一個數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為
(1)求證:數(shù)列成等比數(shù)列;
(2)若,求和.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等差數(shù)列中,,,則的值為(   )。
A.14B.15C.16D.75

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列的前項和為,滿足.
(1)求證:數(shù)列為等比數(shù)列;
(2)若數(shù)列滿足為數(shù)列的前項和,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(滿分13分)已知各項均為正數(shù)的數(shù)列是數(shù)列的前n項和,對任意,有2Sn=2
(Ⅰ)求常數(shù)p的值; 
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)記,()若數(shù)列從第二項起每一項都比它的前一項大,求的取值范圍.

查看答案和解析>>

同步練習冊答案